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ABSTRACT 

It must be said that artificial intelligence has one of the richest histories, but in stories! 

High-understanding artificial machines and creatures were first introduced in ancient Greek 

mythology. Philosophers and mathematicians have long debated reasoning and logic, and today 

these arguments have been accepted in agreement. Such logics have become the basis of digital 

and programmable computers. One of the people who played a key role in this was Alan Turing. 

Turing's theory was that we could use mathematical symbols and numbers such as zero and 

one to perform any mathematical argument on a computer. Simultaneously with this theory, 

new discoveries were made in the field of neuroscience, information theory, and obedience. 

These developments have inspired a small group of researchers to seriously address the issue 

of creating an electronic brain. in 1950, Alan Turing published an article on artificial 

intelligence, which later became known as the Turing test. In this article, it was stated that if a 

person has a written conversation with a computer from behind a wall or anything else, and 

does not know that the other party is not human and does not realize this after the conversation, 

then the computer can be machine-made. He called it smart because he was able to use reason 

and logic well enough for a human being. The Turing test was able to justify some intelligence, 

but only (to some extent)! But since then, no machine has been invented that has successfully 

passed this test. Although the AIML language was invented, it never achieved this level of 

artificial intelligence.After these problems, in the 1990s and close to the 21st century, artificial 

intelligence achieved one of its greatest successes. Although things remained behind the 

scenes, artificial intelligence was used in important areas such as reasoning and logic, data 

processing, medical diagnoses, and a wide range of technology and industry. Soon, AI 

developers decided that they should use step-by-step problem solving in their algorithms. In 

fact, humans often use this method to solve cases such as making puzzles and so on. They were 

also able to come up with successful algorithms for understanding data and incomplete 

information after the 1980s and 1990s, which used probabilities to understand this information. 

But today we are witnessing the increasing progress of this technology in different parts of our 

lives. This technology is still emerging and growing, especially in terms of energy and storage, 

which can reduce the need for governments to use fossil fuels. 
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1. INTRODUCTION 

 

The development of new energy storage materials is playing a critical role in the transition 

to clean and renewable energy. However, improvements in performance and durability of batteries 

have been incremental due to a lack of understanding of both the materials and the complexities 

of the chemical dynamics occurring under operando conditions[1]. Generally, in order to test a 

chemical or physical property, parameter extensive experimental tests are performed. 

Unfortunately, these repetitive experimental and theoretical characterization studies are often 

time-consuming and inefficient because significant progress generally requires a combination of 

chemical intuition and serendipity. These approaches are therefore unable to characterise the 

millions of materials required to define even a small subclass of perfect crystalline materials, let 

alone more complex structures found within electrochemical cells [2]. This so-called `open` loop 

methodology of development results in the time frame for discovering new battery materials being 

remarkably long, often taking longer than a decade to bring a novel formulation to market. 

In the recent decade, first-principle calculations, especially those based on more 

costeffective approximations such as density functional theory (DFT)[3,4] , are now reliably 

automated [5–7] for high-throughput property prediction across vast numbers of materials. 

These methods have been used in successful materials design efforts such as alkali-ion 

batteries[8–10], to identifying promising solid-state Li-ion conductors for battery electrolyte 

applications[11], as well as other materials applications[12–15]. Building on these efforts, 

materials design guided by computation is expected to lead the discovery of new materials and 

greatly reduce materials development time and cost[16] via the expansion and development of 

machine learning (ML) techniques. 

Machine learning is a branch of artificial intelligence which shows good applicability in 

classification, regression and other tasks related to high-dimensional data. Aimed at extracting 

knowledge and gaining insight from large databases, machine learning learns from previous 

computations to produce reliable, repeatable decisions and results [17,18]. With the rapid 

developmental pace in data-driven approaches that combine the wisdom of experts with powerful 

machine learning models, scientists are beginning to integrate human intuition in guiding 

scientific research. Scientists and engineers can now realistically simulate the properties and 

behaviours of materials in specific energy applications. 

ML models have already shown their remarkable ability in the development of new 

crystalline solid materials with fast single-crystal Li-ion conductivity at room temperature[19]. 

DFT simulations guided by machine learning-based methods found that the ML-guided 

search was 2.7 times more likely to identify fast Li-ion conductors, with at least a 44 times 

improvement in the log-average of room temperature Li-ion conductivity and a 1000-fold increase 

in speed at which the candidates were discovered over trial and error methods (Fig.1). Methods 

such as these are for the first time allowing a means to move away from the traditional ̀ open loop` 

methods of research to a far more efficient `closed-loop` method which is paving the way towards 

the inverse design of materials (Table 1). Inverse materials design effectively inverts the current 

design process by allowing the desired performance goals to define the composition and structure 

which best fulfils these targets without defining the starting material or structure beforehand[20–

26]. Crucially, machine learning will play a pivotal role in battery development via aiding inverse 

design as their computational strategies will continue to automatically improve through 
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experience[27]. Cluster Expansion methods[28] are now widely employed to study the disorder 

in electrode materials, to neural networks which systematically improve the reliability of 

molecular dynamics simulations[29]. Probabilistic data-driven models are now able to narrow 

down likely candidates designed for specific applications from a chemical space of more than 

1060 possible molecules. Generative models produce large numbers of candidate molecules which 

will require laboratory synthesis to validate the simulation results requiring synthesis automation 

also powered by ML and robotics. These forms of automation will allow research scientists to 

reduce the amount of time spent doing costly, intuitively driven, repetitive syntheses. Even with 

current databases derived from previous laboratory experiments there is already enough data for 

scientists to produced highly targeted molecules relative to an unguided, `open loop`, approach. 

The online state of charge and state of health of a battery can now be predicted via machine 

learning models each time a battery undergoes charge/discharge cycles and are crucial for durable 

and safe electric vehicles. Early detection of inadequate performance also facilitates timely 

maintenance of battery systems[30–33]. Deep generative learning models are able to map the 

underlying probability distribution of both structure and property and relate them in a nonlinear 

manner allowing these models to filter characteristic features inherent to certain molecules[34,35]. 

Machine learning methods have been recently applied to describing Li-ion battery architecture, 

properties, and performance[36]. 

 

 

 

 

 

 

 

 

 

 

Fig.1 Comparison of computation time and precision for an ML algorithm, human experts, and 

random guessing. The algorithm performs as well as thebest humans but with higher speed, 

enabling the rapid screening of millions of candidate materials [2]. 

 

 

 

 

 

 

 

 

 

 

Fig.2  A simulated crystalline framework of a vanadium-containing cathode material for 

advanced batteries[37]. Lithium atoms shown in green are nestled into the framework. The 

formulation has since been synthesised and performed as the models predicted. 
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These results are due in part to the continually growing databases of atomic structural 

data necessary for DFT calculations as well as large improvements in compute resources which 

are paving the way for a step-change in research methods[38]. Meredig et al. showed their ML 

data-driven approach to materials screening was able to learn the rules of chemistry from DFT, 

make accurate energetic predictions for new compositions at six orders of magnitude lower 

computational expense, and further required no knowledge of the crystal structure[38]. These 

methods are now being applied to predict Li capacity in batteries. Ceder et al [37] showed how 

computational analysis can suggest new materials such as new vanadiumcontaining cathode 

material which was predicted to outperform the energy-storage capacity of conventional 

lithium iron phosphate cathodes by some 10% (Fig.2). The material was synthesised and 

behaved as the ML models predicted. 

 

Modelling of the structures and properties of specific electrode materials, understanding the 

charge/discharge mechanisms at the atomic scale, and delivering rational, `closed` loop design 

strategies for electrode materials as well as electrolytes are well underway. A comprehensive 

review of modelling and theoretical design studies on sulphur cathodes, oxygen cathodes, lithium 

metal anodes, and solid-state electrolytes of lithium metal batteries can be found here[39]. 

The big data era has already arrived with experiments from large scale facilities such as 

synchrotrons generating enormous data rates. Combining big data with machine learning is 

already a crucial research priority. Questions relating to storage, management and analysis of 

high-volume data are challenging problems that need to be solved. Data management platforms 

are vital as supervised ML models generally require large amounts of reliable training data to 

construct reliable models[40,41] as existing experimental data and that of future experimental 

efforts still only cover a fraction of the stable chemical combinations possibly found in nature. 

The development of generic data management and sharing platforms is required to provide 

impetus to accelerate materials discovery and design. Advanced materials characterization 

techniques, with their ever-growing rates of data acquisition and storage capabilities, represent a 

challenge in modern materials science, and new procedures for quickly assessing and analysing 

the collected data are needed to bring new energy solutions to market in less time[42]. Currently, 

large, high-quality open databases of computed materials properties such as the Materials 

Project[15], Open Quantum Materials Database[43] and the AFLOW repository are growing at a 

rapid pace and helping to map the vast regions of chemical space. Databases and libraries for 

battery electrolytes[44] are also being built which will be used in the future to rapidly formulate 

next-generation electrolytes. The European Large Scale Research Initiative `Battery 2030+` has 

recently identified establishing the `Battery Interface Genome (BIG)` and a `Materials 

Acceleration Platform (MAP)` as essential milestones towards the accelerated discovery of ultra-

high performance batteries[45]. In one of the largest collections of molecules, the chemical space 

project[46] has mapped 166.4 billion molecules that contain at most 17 heavy atoms. 

In the near future, we can expect to see huge growth in these new databases and libraries which 

will, in turn, increase the predictive power of machine learning. An important development to note 

is work from a Stanford, Google Brain collaboration where researchers show a novel approach to 

transfer physical insights onto more general descriptors derived from physical equations allowing 
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them to screen billions of unknown compositions for Li-ion conductivity using an accurate model 

trained with physical insights to generate a large database from small data[47]. Central to machine 

learning methodologies applied to chemical sciences is the representation of molecules. These 

representations that act to encode the relevant physics and chemistry will tend to generalize better 

as research progresses allowing for even faster materials screening. Despite considerable progress, 

much work remains. 

Graph and hierarchical representations of molecules are an area requiring further study[48]. 

Finally, access to compute infrastructure in order to undertake these simulations is required. 

Around the world, new AI centres are under development or already operating to provide 

comprehensive assistance to scientists and institutions looking to combine ML methods to their 

research. The combination of large research institutions and powerful ML infrastructure will 

accelerate materials design dramatically in the coming years and allow for close participation of 

leading tech companies to play a part in the development of fundamental scientific research as 

well as spur on new economic development. 

 

2. SUSTAINABILITY AND TECHNOLOGY 

The impacts of Climate change on cities have been greatly covered in literature, and urban leaders, 

policy makers, and other stakeholders are driven to strategize on to mitigate those impacts 

(49).Cutter, Emrich, Gall, and Reeves (2018) [50] highlights that one the most prevalent impact 

of climate change is that of flooding, that tend to occur in cities that were previously relatively 

deemed as safe. Besides flooding, there are increased incidences of bushfires which are impacting 

on the liveability of cities as shelters are at risk, and even rendering entire urban areas as 

uninhabitable  [51,52], thus forcing people to leave their homes. In certain instances, further 

accentuates the sad phenomenon of ‘climate refugees’. For cities in developing countries where 

the local governments are financially constrained; hence unable to offer alternative lands, 

infrastructure repairs, or housing subsidies, a portion of the population ultimately ends up 

homeless and this leads to the creation of an informal economy; which are even more vulnerable 

to the impacts of climate change[53]. Emilsson and Sang (2017)[54] further shares how cities are 

seen to experience higher temperatures, especially in form of heat waves which result to loss of 

lives, 

 and in some cities it drives a higher energy demand for mechanical cooling [55]. Furthermore, 

unlike before, cities are now experiencing shortage of food supplies as climate change has also 

affected the agricultural sector due to the unpredictability of climate from conventional farming 

techniques [56]. Doherty, Klima, and Hellman (2016)[57] and Allam (2012)[58] support that 

finding solutions to these impacts will be key to the survival of cities and that mitigation 

strategies, potent with sustainability consciousness in mind, must be sought at various levels 

of policy making. They peg their argument on results from other researchers [59,60] that 

established that cities contribute greatly in aggravating climate change. On the same line, many 

city managements have started to fashion policies in such a way so as to have as little as 

negative impacts as possible to prevent the compromise of the environment and available 

resources [61,62]. In this front, many cities have managed to leverage on the available 

advanced technologies such as AI, Big data, IoT, Blockchain, amongst others to render 

sustainable solutions to both city planning and management [63,64,65,66,67]. 
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Barns et al. (2016)[68] highlights that one such area where technology has been helpful 

is the implementation of the Smart Cities concept, which can be key in helping cities achieve 

resilience and sustainability. Koenig et al. (2017)[69] and Beatley (2011)[70], amongst others, 

argue that analysis, through AI enabled devices and systems, of data from IoT; that Smart Cities 

prone, have allowed the customization of different urban fabrics such that they optimize on the 

available resources. For instance, Smart Cities have catalyzed the introduction of autonomous 

vehicles, and even encouraged sustainability passive methods through the creation of bicycle 

lanes and walking paths; hence, contributing to the reduction in fossil fuel consumption [71]. 

These technologies have encouraged the adoption of construction tools in the building sector 

that can possibly integrate low power and water consumption, allow for green spaces and also 

accommodate green walls and roofs and have smart waste management systems [72,73]. These 

types of constructions also allow for increased conservation of land as there is reduced sprawl; 

hence, the land can be used for other purposes like agriculture, open space and forest reserve, 

amongst other uses that can benefit the local population and users of the urban fabric [74]. 

Dengel (2013)[75] succinctly shares how, through AI and big data, the agricultural 

sector is enhanced since information on issues like weather patterns, soil types and the best 

crops to plant at particular areas are readily available and this provides informed decisions as 

to crop management; which leads to higher yields and related proportional economic growth. 

The same approach in other sectors, especially in developing countries, through domains such 

as health, business, transport, services, amongst others, can render economic benefits while 

catering for sustainability outcomes by saving resources from these sectors[76,77]. The same 

can be used for climate change mitigation projects, and benefit cities, countries and regions 

that need it the most; like Small Island Developing States and Low-Income Economies that are 

on the front line of the impacts of Climate Change. 

 

 

3. CONCLUSIONS 

 

In the development of the next generation of batteries, we can expect that an increasing 

role will be played by modern multiscale computation approaches. In combination with 

machine learning[78,79]. ML inverse design [80,81] can enable a model that adapts as it 

explores chemical space, which allows for expanding a model in regions of high uncertainty 

and enabling the discovery of regions of molecular space with desirable properties as a function 

of composition53. Notably, even data from failed experiments is proving useful in training ML 

models. In recent years, machine learning techniques51 and big data methods[82] have 

successfully resolved the difficulties of modelling the relationships between materials 

properties and complex physical factors. ML models can already significantly outperform 

humans in terms of both speed and accuracy in the interpretation of materials spectra and 

images (X-ray, neutron, electron)[19]. These types of approaches will complement continued 

advances in instrumentation, especially under operando studies and artificial intelligence 

guided design of experiments. 

Active learning in the space of objective functions could lead to a better understanding 

of the best rewards to seek while carrying out machine learning. In the near future researchers 
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may simultaneously conceive, create, and characterise with each data point transmitting and 

receiving data to constantly improve 

 the accuracy of the models[1,34,83]. With the continuous development of theories and methods, 

the topics to which machine learning can be applied in materials science will become broader and 

have an ever increasing effect on the efficacy of research. 

 

Table 1. Summary of machine learning techniques applied to energy storage materials 

 

Materials Prediction Method Key findings References 

NaNi1/3Mn1/3Co1/3O2 

cathode material for 

Na-ion batteries 

Modelling and 

optimization of 

the fabrication 

process of the 

positive 

electrode 

material for 

sodium-ion 

batteries 

Support vector 

regression 

synchronized 

crossvalidation 

simplex 

algorithm 

cluster 

Obtained optimized 

value of capacity is 

176 

mAhg-1 for 99 

cycles, which is 

better than those of 

conventional 

batteries used for 

commercial storage 

purposes 

84 

Ni-rich cathode 

materials: LiNixCo1 

xyMn1- x-y-zO2 

(NCM) for electric 

vehicle applications. 

1. To construct 

a predictive 

model to 

propose 

optimized 

experimental 

parameters that 

satisfy the 

target 

specifications. 

2. Search for an 

ideal 

synthesis 

process of Ni-

rich cathode 

materials, 

leading to 

accelerated 

development of 

lithium-ion 

batteries 

with higher 

capacity and 

longer cycle 

1. ML 

regression 

models: 

Support vector 

machine 

(SVM), 

Decision tree 

(DT), Ridge 

regression 

(RR), 

Random forest 

(RF), 

Extremely 

randomized 

tree 

(ERT), and 

Neural network 

(NN) with 

multi-layer 

perceptron. ML 

model (ERT 

+ AdaBoost) 2. 

The 

pythonbased 

1. Optimized 

synthetic 

parameters for Ni-

rich 

cathode materials, 

LiNixCo1-x-yMn1-

x-y-zO2 (NCM) 

with x> 0.85 for 

improve the 

electrochemical 

performance 2. 

Showed that the 

calcination 

temperature and the 

particle size are 

determining factors 

for achieving a 

long cycle 

life. 3. Confirmed 

that structures with 

higher 

calcination 

temperatures, 

higher Ni content, 

85 
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life for electric 

vehicles 3. 

Design, predict 

and improve 

the 

electrochemical 

performance of 

Nirich cathode 

materials: 

LiNixCo1-

xyMn1- x-y-

zO2 (NCM) for 

electric 

vehicle 

applications 

ML package 

Scikitlearn 

and a larger 

primary particle 

size result in poorer 

cycle life 

performance 4. ML 

model (ERT + 

AdaBoost) 

exhibited the best 

performance for 

predicting the 

initial capacity, 

residual Li, and 

the cycle life. 5. 

Reverse 

engineering scheme 

was successfully 

used to propose 

ideal experimental 

parameters to fulfil 

the target 

specifications. 
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Li5B7S13, 

Li2B2S5, 

Li3ErCl6, 

LiSO3F, 

Li3InCl6, 

Li2HIO, 

LiMgB3(H9N)2, 

and 

CsLi2BS3. 

Li5B7S13 

Develop a 

machine 

learning (ML)-

based 

model to predict 

superionic Li-ion 

conduction 

Machine learning 

(ML)-based 

prediction model 

for material 

selection and 

density functional 

theory molecular 

dynamics (DFT-

MD) 

simulations for 

calculating ionic 

conductivity 

1. Discovery many new solid 

materials with predicted 

superionic Li-ion conduction 

(≥10−4 S/cm) at room 

temperature: Li5B7S13, 

Li2B2S5, Li3ErCl6, 

LiSO3F, Li3InCl6, 

Li2HIO, LiMgB3(H9N)2, 

and CsLi2BS3. 2. Li5B7S13, 

has a 

DFT-MD predicted RT Li 

conductivity (74mScm-1) 

many 

times larger than the fastest 

known Li-ion conductors 

19 

LiPF6 electrolyte 

for 

lithium-ion 

batteries 

Determine 

unknown 

concentrations of 

major 

components in 

typical 

lithium-ion 

battery 

electrolytes. 

Fourier 

Transform 

Infrared 

Spectroscopy and 

machine learning 

Confirmed that the 

concentration of LiPF6 was 

depleted by 10–20% when 

the cells ran 200 cycles at 

55◦C. Cell failure due to a 

large amount of salt loss 

86 

Carbon-based 

molecular 

electrode 

materials 

To identify 

promising 

positive electrode 

materials with 

high 

performance 

DFT-machine 

learning 

framework 

1. Design carbon-based 

molecular electrode materials 

2. Found that the electron 

affinity has the highest 

contribution to redox 

potential, followed by the 

number of oxygen atoms, the 

HOMO–LUMO gap, the 

number of lithium atoms, 

LUMO, and HOMO in order 

respectively 

87 



 

 
 

International Journal of Architecture, Energy and Urbanism 

Volume 1, Issue 1, June 2023 

http://globalpublisher.org/journals-1004 

 

 

www.globalpublisher.org   10 

 

 

REFERENCES 

 

(1) Liu, Y.; Zhao, T.; Ju, W.; Shi, S.; Shi, S.; Shi, S. Materials Discovery and Design Using 

Machine  

      Learning. J. Mater. 2017, 3 (3), 159–177. 

(2) Cheon, G.; Cubuk, E. D.; Antoniuk, E. R.; Blumberg, L.; Goldberger, J. E.; Reed, E. J. 

Revealing  

     the Spectrum of Unknown Layered Materials with Superhuman Predictive Abilities. J. 

Phys.  

     Chem. Lett. 2018, 9 (24), 6967–6972. 

(3) Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation 

Effects.  

      Phys. Rev. 1965, 140 (4A), A1133–A1138. 

(4) Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136 (3B), B864–

B871. 

(5) Ong, S. P.; Richards, W. D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; 

Chevrier, V.  

      L.; Persson, K. A.; Ceder, G. Python Materials Genomics (Pymatgen): A Robust, Open-

Source  

      Python Library for Materials Analysis. Comput. Mater. Sci. 2013, 68, 314–319. 

(6) Jain, A.; Ong, S. P.; Chen, W.; Medasani, B.; Qu, X.; Kocher, M.; Brafman, M.; Petretto, 

G.;  

Layered structure 

cathode materials 

for lithium-ion 

batteries 

Predicting the 

electrochemical 

properties: 

discharge energy 

density and 

capacity fading 

Artificial neural 

network 

algorithm 

Proposed 3D-QANN model: 

a quantitative 

structure−property 

relaKonship model for 

predicting the physical 

properties of inorganic 

crystalline solids and the 

design new materials 

88 

LiFePO4 The cycle life of 

lithium-ion 

batteries 

Bayesian LS-

SVR and wavelet 

neural network 

Predicted the cycle life of the 

battery within a very short 

prediction time (within 

1.41s) with the average error 

is only about one-third of 

that of the traditional 

algorithm 

89 

Lithium-ion 

batteries 

The battery 

capacity 

Gaussian process 

regression 

In situ capacity estimation 

over short periods of 

galvanostatic operation 

90 



 

 
 

International Journal of Architecture, Energy and Urbanism 

Volume 1, Issue 1, June 2023 

http://globalpublisher.org/journals-1004 

 

 

www.globalpublisher.org   11 

     Rignanese, G.-M.; Hautier, G.; et al. FireWorks: A Dynamic Workflow System Designed 

for  

     High-Throughput Applications. Concurr. Comput. Pract. Exp. 2015, 27 (17), 5037–5059. 

(7) Mathew, K.; Montoya, J. H.; Faghaninia, A.; Dwarakanath, S.; Aykol, M.; Tang, H.; Chu, 

I.;  

     Smidt, T.; Bocklund, B.; Horton, M.; et al. Atomate: A High-Level Interface to Generate, 

Execute,  

     and Analyze Computational Materials Science Workflows. Comput. Mater. Sci. 2017, 139, 

140– 

    152. 

(8) Hautier, G.; Jain, A.; Chen, H.; Moore, C.; Ong, S. P.; Ceder, G. Novel Mixed Polyanions  

      Lithium-Ion Battery Cathode Materials Predicted by High-Throughput Ab Initio 

Computations. J.  

     Mater. Chem. 2011, 21 (43), 17147. 

(9) Hautier, G.; Jain, A.; Ong, S. P.; Kang, B.; Moore, C.; Doe, R.; Ceder, G. Phosphates as 

Lithium- 

      Ion Battery Cathodes: An Evaluation Based on High-Throughput Ab Initio Calculations. 

Chem.  

      Mater. 2011, 23 (15), 3495–3508. 

(10) Ong, S. P.; Mo, Y.; Richards, W. D.; Miara, L.; Lee, H. S.; Ceder, G. Phase Stability,  

        Electrochemical Stability and Ionic Conductivity of the Li 10±1 MP 2 X 12 (M = Ge, Si, 

Sn, Al  

        or P, and X = O, S or Se) Family of Superionic Conductors. Energy Environ. Sci. 2013, 6 

(11),  

        148–156. 

(11) Artem R. Oganov. Modern Methods of Crystal Structure Prediction; Oganov, A. R., Ed.; 

Wiley- 

        VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010. 

(12) Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; N  ّ rskov, J. K. Computational 

High- 

        Throughput Screening of Electrocatalytic Materials for Hydrogen Evolution. Nat. Mater. 

2006, 5  

        (11), 909–913. 

(13) Yang, K.; Setyawan, W.; Wang, S.; Buongiorno Nardelli, M.; Curtarolo, S. A Search 

Model for  

       Topological Insulators with High-Throughput Robustness Descriptors. Nat. Mater. 2012, 

11 (7),  

        614–619. 

(14) Hachmann, J.; Olivares-Amaya, R.; Atahan-Evrenk, S.; Amador-Bedolla, C.; Sgnchez- 

Carrera,  

        R. S.; Gold-Parker, A.; Vogt, L.; Brockway, A. M.; Aspuru-Guzik, A. The Harvard Clean  

        Energy Project: Large-Scale Computational Screening and Design of Organic 

Photovoltaics on  

        the World Community Grid. J. Phys. Chem. Lett. 2011, 2 (17), 2241–2251. 



 

 
 

International Journal of Architecture, Energy and Urbanism 

Volume 1, Issue 1, June 2023 

http://globalpublisher.org/journals-1004 

 

 

www.globalpublisher.org   12 

(15) Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, 

D.;  

Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A Materials Genome 

Approach to Accelerating Materials Innovation. APL Mater. 2013, 1 (1), 011002. 

(16) Yang, L.; Wang, Z.; Feng, Y.; Tan, R.; Zuo, Y.; Gao, R.; Zhao, Y.; Han, L.; Wang, Z.; 

Pan, F.  

        Flexible Composite Solid Electrolyte Facilitating Highly Stable “Soft Contacting” Li- 

Electrolyte  

        Interface for Solid State Lithium-Ion Batteries. Adv. Energy Mater. 2017, 7 (22), 1701437. 

(17) Shi, S.; Gao, J.; Liu, Y.; Zhao, Y.; Wu, Q.; Ju, W.; Ouyang, C.; Xiao, R. Multi-Scale  

       Computation Methods: Their Applications in Lithium-Ion Battery Research and 

Development.     

       Chinese Phys. B 2016, 25 (1), 018212. 

(18) Jordan, M. I. Artificial Intelligence—The Revolution Hasn’t Happened Yet. Harvard Data 

Sci.  

       Rev. 2019. 

(19) Sendek, A. D.; Cubuk, E. D.; Antoniuk, E. R.; Cheon, G.; Cui, Y.; Reed, E. J. Machine 

Learning- 

       Assisted Discovery of Solid Li-Ion Conducting Materials. Chem. Mater. 2019, 31 (2), 

342–352. 

(20) Guo, Y.; Li, H.; Zhai, T. Reviving Lithium-Metal Anodes for Next-Generation High-

Energy  

       Batteries. Adv. Mater. 2017, 29 (29), 1700007. 

(21) Park, J.-B.; Lee, S. H.; Jung, H.-G.; Aurbach, D.; Sun, Y.-K. Redox Mediators for Li-O 2  

       Batteries: Status and Perspectives. Adv. Mater. 2018, 30 (1), 1704162. 

(22) Song, H.; Deng, H.; Li, C.; Feng, N.; He, P.; Zhou, H. Advances in Lithium-Containing 

Anodes  

        of Aprotic Li-O 2 Batteries: Challenges and Strategies for Improvements. Small Methods 

2017, 1  

       (8), 1700135. 

(23) Zhang, R.; Li, N.-W.; Cheng, X.-B.; Yin, Y.-X.; Zhang, Q.; Guo, Y.-G. Advanced  

       Micro/Nanostructures for Lithium Metal Anodes. Adv. Sci. 2017, 4 (3), 1600445. 

(24) Lin, D.; Liu, Y.; Cui, Y. Reviving the Lithium Metal Anode for High-Energy Batteries. 

Nat.  

       Nanotechnol. 2017, 12 (3), 194–206. 

(25) Wang, Y.; Richards, W. D.; Ong, S. P.; Miara, L. J.; Kim, J. C.; Mo, Y.; Ceder, G. Design  

        Principles for Solid-State Lithium Superionic Conductors. Nat. Mater. 2015, 14 (10), 

1026– 

        1031. 

(26) Manthiram, A.; Yu, X.; Wang, S. Lithium Battery Chemistries Enabled by Solid-State  

        Electrolytes. Nat. Rev. Mater. 2017, 2 (4), 16103. 

(27) Jordan, M. I.; Mitchell, T. M. Machine Learning: Trends, Perspectives, and Prospects. 

       Science (80-. ). 2015, 349 (6245), 255–260. 



 

 
 

International Journal of Architecture, Energy and Urbanism 

Volume 1, Issue 1, June 2023 

http://globalpublisher.org/journals-1004 

 

 

www.globalpublisher.org   13 

(28) Tao, X.; Liu, Y.; Liu, W.; Zhou, G.; Zhao, J.; Lin, D.; Zu, C.; Sheng, O.; Zhang, W.; Lee, 

H.- 

       W.; et al. Solid-State Lithium–Sulfur Batteries Operated at 37 °C with Composites of 

       Nanostructured Li 7 La 3 Zr 2 O 12 /Carbon Foam and Polymer. Nano Lett. 2017, 17 (5), 

2967–   

       2972. 

(29) Chen, R.; Qu, W.; Guo, X.; Li, L.; Wu, F. The Pursuit of Solid-State Electrolytes for 

        Lithium Batteries: From Comprehensive Insight to Emerging Horizons. Mater. 

        Horizons 2016, 3 (6), 487–516. 

(30) Li, Y.; Liu, K.; Foley, A. M.; Zülke, A.; Berecibar, M.; Nanini-Maury, E.; Van Mierlo, J.; 

       Hoster, H. E. Data-Driven Health Estimation and Lifetime Prediction of Lithium-Ion 

       Batteries: A Review. Renew. Sustain. Energy Rev. 2019, 113 (April). 

(31) Yao, H.; Zheng, G.; Hsu, P.-C.; Kong, D.; Cha, J. J.; Li, W.; Seh, Z. W.; McDowell, M. 

T.; 

       Yan, K.; Liang, Z.; et al. Improving Lithium–Sulphur Batteries through Spatial Control 

      of Sulphur Species Deposition on a Hybrid Electrode Surface. Nat. Commun. 2014, 5(1), 

3943. 

(32) Xiong, S.; Xie, K.; Diao, Y.; Hong, X. Properties of Surface Film on Lithium Anode with 

        LiNO3 as Lithium Salt in Electrolyte Solution for Lithium–Sulfur Batteries. Electrochim. 

       Acta 2012, 83, 78–86. 

(33) Li, F.; Liu, Q.; Hu, J.; Feng, Y.; He, P.; Ma, J. Recent Advances in Cathode Materials for 

       Rechargeable Lithium–Sulfur Batteries. Nanoscale 2019, 11 (33), 15418–15439. 

(34) Aspuru-Guzik, A.; Lindh, R.; Reiher, M. The Matter Simulation (R)Evolution. ACS Cent. 

       Sci. 2018, 4 (2), 144–152. 

(35) Jargensen, P. B.; Schmidt, M. N.; Winther, O. Minireview Deep Generative Models for 

       Molecular Science Minireview. 2018, 1700133, 1–9. 

(36) Kauwe, S.; Rhone, T.; Sparks, T. Data-Driven Studies of Li-Ion-Battery Materials. 

      Crystals 2019, 9 (1), 54. 

(37) Wang, Q.; Xu, J.; Zhang, W.; Mao, M.; Wei, Z.; Wang, L.; Cui, C.; Zhu, Y.; Ma, J. 

       Research Progress on Vanadium-Based Cathode Materials for Sodium Ion Batteries. J. 

      Mater. Chem. A 2018, 6 (19), 8815–8838. 

(38) Meredig, B.; Agrawal, A.; Kirklin, S.; Saal, J. E.; Doak, J. W.; Thompson, A.; Zhang, K.; 

      Choudhary, A.; Wolverton, C. Combinatorial Screening for New Materials in 

      Unconstrained Composition Space with Machine Learning. Phys. Rev. B - Condens. 

     Matter Mater. Phys. 2014, 89 (9), 1–7. 

(39) Fan, Y.; Chen, X.; Legut, D.; Zhang, Q. Modeling and Theoretical Design of Next- 

       Generation Lithium Metal Batteries. Energy Storage Mater. 2019, 16 (January 2018), 

      169–193. 

(40) Li, Z.; Zhang, J.; Lou, X. W. D. Hollow Carbon Nanofibers Filled with MnO 2 

       Nanosheets as Efficient Sulfur Hosts for Lithium-Sulfur Batteries. Angew. Chemie Int. 

       Ed. 2015, 54 (44), 12886–12890. 

(41) Zhao, C.; Shen, C.; Xin, F.; Sun, Z.; Han, W. Prussian Blue-Derived Fe2O3/Sulfur 

       Composite Cathode for Lithium–Sulfur Batteries. Mater. Lett. 2014, 137, 52–55. 

(42) Sendek, A. D.; Yang, Q.; Cubuk, E. D.; Duerloo, K.-A. N.; Cui, Y.; Reed, E. J. Holistic 



 

 
 

International Journal of Architecture, Energy and Urbanism 

Volume 1, Issue 1, June 2023 

http://globalpublisher.org/journals-1004 

 

 

www.globalpublisher.org   14 

       Computational Structure Screening of More than 12 000 Candidates for Solid Lithium- 

       Ion Conductor Materials. Energy Environ. Sci. 2017, 10 (1), 306–320. 

(43) Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, 

      T.; Baker, L.; Lai, M.; Bolton, A.; et al. Mastering the Game of Go without Human 

       Knowledge. Nature 2017, 550 (7676), 354–359. 

(44) Qu, X.; Jain, A.; Rajput, N. N.; Cheng, L.; Zhang, Y.; Ong, S. P.; Brafman, M.; Maginn, 

E.; 

        Curtiss, L. A.; Persson, K. A. The Electrolyte Genome Project: A Big Data Approach in 

        Battery Materials Discovery. Comput. Mater. Sci. 2015, 103, 56–67. 

(45) Bhowmik, A.; Castelli, I. E.; Garcia-Lastra, J. M.; J  ّ rgensen, P. B.; Winther, O.; Vegge, 

        T. A Perspective on Inverse Design of Battery Interphases Using Multi-Scale 

        Modelling, Experiments and Generative Deep Learning. Energy Storage Mater. 2019, 

        21 (February), 446–456. 

(46) Reymond, J.-L. The Chemical Space Project. Acc. Chem. Res. 2015, 48 (3), 722–730. 

(47) Cubuk, E. D.; Sendek, A. D.; Reed, E. J. Screening Billions of Candidates for Solid 

        Lithium-Ion Conductors: A Transfer Learning Approach for Small Data. J. Chem. Phys. 

        2019, 150 (21). 

(48) Sanchez-Lengeling, B.; Wei, J. N.; Lee, B. K.; Gerkin, R. C.; Aspuru-Guzik, A.; 

Wiltschko, 

        A. B. Machine Learning for Scent: Learning Generalizable Perceptual Representations 

        of Small Molecules. 2019. 

(49) OECD (2014). Cities and climate change: National governments enabling local action. 

       OECD policy perspectives (pp. 1–21). OECD. 

(50) Cutter, S. L., Emrich, C. T., Gall, M., & Reeves, R. (2018). Flash flood risk and the 

paradox 

       of urban development. Natural Hazards Review, 19, 05017005–05017012. 

(51) McDonald, C. (2017). Current and future impacts of climate change on housing, buildings 

and 

        infrastructure. Surry Hills, Austraila: Australia Senate. 

(52) Hales, S., Baker, M., Howden-Chapman, P., Menne, B., Woodruff, R., & Woodward, A. 

       (2007). Implications of global climate change for housing, human settlements and 

        public health. Reviews on Environmental Health, 22, 295–302. 

(53) UN Habitat (2015). Urbanization and climate change in small island developing states. 

        Nairobi, Kenya: United Nations Human Settlements Program (UN-Habitat). 

(54) Emilsson, T., & Sang, O. A. (2017). Impacts of climate change on urban areas and 

naturebased 

       solutions for adaptation. Cham: Springer. 

(55) Allam, Z. (2014). Exploring the urban heat island (UHI) effect in Port Louis, Mauritius. 

        University of Mauritius Research Journal, 20, 138–153. 

(56) Burton, P., Lyons, K., Richards, C., Amati, M., Rose, N., Fours, L. D., ... Barclay, R. 

(2013). 

        Urban food security, urban resilience and climate change. Gold Coast: National Climate 

        Change Adaptation Research Facility. 



 

 
 

International Journal of Architecture, Energy and Urbanism 

Volume 1, Issue 1, June 2023 

http://globalpublisher.org/journals-1004 

 

 

www.globalpublisher.org   15 

(57) Doherty, M., Klima, K., & Hellman, J. J. (2016). Climate change in the urban 

environment: 

        Advancing, measuring and achieving resilience. Environmental Science & Policy, 66. 

(58) Allam, Z. (2012). Sustainable architecture: Utopia or feasible reality? Journal of 

Biourbanism, 2,  

        47–61. 

(59) Hughes, S., & Sarzynski, A. (2015). Building capacity for climate change adaptation in 

       urban areas. Urban Climate, 13, 1–3. 

(60) OECD (2014). Cities and climate change: National governments enabling local action. 

       OECD policy perspectives (pp. 1–21). OECD. 

(61) George, G., Schillebeeckx, S. D., & Liak, T. L. (2015). The management of natural 

resources: 

        An overview and research agenda. Academy of Management Journal, 58, 1595–1613. 

(62) Silva, B. N., Khan, M., & Han, K. (2018). Towards sustainable smart cities: A review of 

        trends, architectures, components, and open challenges in smart cities. Sustainable Cities 

and     

        Society, 38, 697–713. 

(63) Allam, M. Z. (2018b). Redefining the smart city: Culture, metabolism and governance. 

Case 

        study of Port Louis, Mauritius. Curtin University. 

(64) Allam, Z., & Jones, D. (2018b). Promoting resilience, liveability and sustainability 

       through landscape architectural design: A conceptual framework for Port Louis, 

      Mauritius; a small island developing state. IFLA world congress Singapore 2018 (pp. 

      1599–1611). International Federation of Landscape Architects: Singapore. 

(65) Allam, Z., & Newman, P. (2018a). Redefining the smart city: Culture, metabolism & 

        governance. Smart Cities, 1, 4–25. 

(66) Lim, C., Kim, K.-J., & Maglio, P. P. (2018). Smart cities with big data: Reference models, 

       challenges, and considerations. Cities, 82, 86–99. 

(67) Pioletti, Fox, M. S., & Goodfellow, T. (Eds.). (2016). Cities and development, Urban 

        Research & Practice, 9, 329–331. 

(68) Barns, S., Cosgrave, E., Acuto, M., & Mcneill, D. (2016). Digital infrastructures and urban 

        governance. Urban Policy and Research, 20–31. 

(69) Koenig, R., Miao, Y., Knecht, K., Bus, P., & Mei-Chih, C. (2017). Interactive urban 

        synthesis: Computational methods for fast prototyping of urban design proposals. 

        CAAD Futures, 724, 23–41. 

(70) Beatley, T. (2011). Biophilic cities: Integrating nature into urban design and planning. 

       Washington, D. C: Island Press. 

(71) Barns, S., Cosgrave, E., Acuto, M., & Mcneill, D. (2016). Digital infrastructures and urban 

        governance. Urban Policy and Research, 20–31. 

(72) Allam, Z., & Jones, D. (2018a). Towards a circular economy: A case study of waste 

       conversion into housing units in Cotonou, Benin. Urban Science, 2, 118. 

(73) Conke, L. S., & Ferreira, T. L. (2015). Urban metabolism: Measuring the city's 

contribution 

        to sustainable development. Environmental Pollution, 202, 146–152. 



 

 
 

International Journal of Architecture, Energy and Urbanism 

Volume 1, Issue 1, June 2023 

http://globalpublisher.org/journals-1004 

 

 

www.globalpublisher.org   16 

(74) Gaigné, C., Riou, S., & Thisse, J.-F. (2012). Are compact cities environmentally friendly? 

        Journal of Urban Economics, 72, 123–136. 

(75) Dengel (2013). Special issue on artificial intelligence in agriculture. Künstliche 

Intelligenz, 

        27, 309–311. 

(76) Barns, S., Cosgrave, E., Acuto, M., & Mcneill, D. (2016). Digital infrastructures and urban 

        governance. Urban Policy and Research, 20–31. 

(77) Beatley, T. (2011). Biophilic cities: Integrating nature into urban design and planning. 

       Washington, D. C: Island Press. 

(78) Zhou, Z.; Li, X.; Zare, R. N. Optimizing Chemical Reactions with Deep Reinforcement 

       Learning. ACS Cent. Sci. 2017, 3 (12), 1337–1344. 

(79) Guimaraes, G. L.; Sanchez-Lengeling, B.; Outeiral, C.; Farias, P. L. C.; Aspuru-Guzik, A. 

        Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence 

        Generation Models. 2017. 

(80) Li, Z.; Wu, H. Bin; (David) Lou, X. W. Rational Designs and Engineering of Hollow 

        Micro-/Nanostructures as Sulfur Hosts for Advanced Lithium–Sulfur Batteries. Energy 

        Environ. Sci. 2016, 9 (10), 3061–3070. 

(81) Wang, T.; Zhao, N.; Shi, C.; Ma, L.; He, F.; He, C.; Li, J.; Liu, E. Interface and Doping 

         Effects on Li Ion Storage Behavior of Graphene/Li 2 O. J. Phys. Chem. C 2017, 121 (36), 

         19559–19567. 

(82) Pellegrini, V.; Bodoardo, S.; Brandell, D.; Edstr  ّ m, K. Challenges and Perspectives for 

        New Material Solutions in Batteries. Solid State Commun. 2019, No. xxxx. 

(83) Aspuru-Guzik, Alلn, and K. P. Materials Acceleration Platform: Accelerating Advanced 

       Energy Materials Discovery by Integrating High-Throughput Methods and Artificial 

        Intelligence http://nrs.harvard.edu/urn-3:HUL.InstRepos:35164974. 

(84) Ruhatiya, C.; Singh, S.; Goyal, A.; Niu, X.; Hanh Nguyen, T. N.; Nguyen, V. H.; Tran, V. 

M.;     

        Phung LE, M. L.; Garg, A.; Gao, L. Electrochemical Performance Enhancement of 

        Sodium-Ion Batteries Fabricated With NaNi1/3Mn1/3Co1/3O2 Cathodes Using 

        Support Vector Regression-Simplex Algorithm Approach. J. Electrochem. Energy 

       Convers. Storage 2020, 17 (1), 1–8. 

[85] Min, K.; Choi, B.; Park, K.; Cho, E. Machine Learning Assisted Optimization of 

        Electrochemical Properties for Ni-Rich Cathode Materials. Sci. Rep. 2018, 8 (1), 1–7. 

(86) Ellis, L. D.; Buteau, S.; Hames, S. G.; Thompson, L. M.; Hall, D. S.; Dahn, J. R. A New 

        Method for Determining the Concentration of Electrolyte Components in Lithium-Ion 

       Cells, Using Fourier Transform Infrared Spectroscopy and Machine Learning. J. 

       Electrochem. Soc. 2018, 165 (2), A256–A262. 

(87) Allam, O.; Cho, B. W.; Kim, K. C.; Jang, S. S. Application of DFT-Based Machine 

       Learning for Developing Molecular Electrode Materials in Li-Ion Batteries. RSC Adv. 

       2018, 8 (69), 39414–39420. 

(88) Choi, H.; Sohn, K. S.; Pyo, M.; Chung, K. C.; Park, H. Predicting the Electrochemical 

        Properties of Lithium-Ion Battery Electrode Materials with the Quantum Neural 

        Network Algorithm. J. Phys. Chem. C 2019, 123 (8), 4682–4690. 

(89) Wang, X.; Gao, C.; Sun, M. Probabilistic Prediction Algorithm for Cycle Life of Energy 

http://nrs.harvard.edu/urn-3:HUL.InstRepos:35164974


 

 
 

International Journal of Architecture, Energy and Urbanism 

Volume 1, Issue 1, June 2023 

http://globalpublisher.org/journals-1004 

 

 

www.globalpublisher.org   17 

        Storage in Lithium Battery. World Electr. Veh. J. 2019, 10 (1), 1–17. 

(90) Richardson, R. R.; Birkl, C. R.; Osborne, M. A.; Howey, D. A. Gaussian Process 

        Regression for in Situ Capacity Estimation of Lithium-Ion Batteries. IEEE Trans. Ind. 

       Informatics 2019, 15 (1), 127–138. 

 


