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ABSTRACT 

 

At present, more than half of the world's energy needs are met by coal, natural gas and crude 

oil. These fossil fuels not only exacerbate the greenhouse effect in the Earth's atmosphere, but 

also lead to climate change. Awareness of climate change and a critical increase in the cost of 

traditional energy resources have led many communities to pursue innovative strategies, 

including renewable energy (RE) systems. For example, solar, wind, and blue energy are 

renewable energy sources that are environmentally friendly and have the potential to be widely 

used. Today, artificial intelligence (AI) has taken root in our daily lives and has significantly 

affected the fields of clean energy storage. The use of artificial intelligence in planning to 

increase the speed of energy storage from the environment as well as optimizing security and 

the comfort of the living environment. 

 

Keywords: renewable energy ,artificial intelligence, Wind energy ,Solar energy , Geothermal 

energy , Hydro energy 

 

 

1. INTRODUCTION 

Currently, the world economy is inherently dependent on the effective ways of 

electrical power generation, appropriate management and distribution [1–3]. The conventional 

approaches of energy production have a massive side effect on the global climate and climate 

changes. According to recently published reports by the International Energy Agency (IEA) 

“Energy-related greenhouse gas (GHG) emissions would lead to considerable climate 

degradation with an average 6 °C global warming” [4]. Consequently, the clean energy is the 

feasible solution to make the world safer and energy proficient. It is environment-friendly due 

to minimum CO2 contamination, which is the basic measure of the greenhouse effect 

responsible for environmental degradation [5–7]. Research and development in the RE domain 
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on both the governmental and public level will achieve better efficiency and guaranteed 

reimbursement in future demand of energy because of the simple and low cost of maintenance, 

durability and the unlimited sources [8–10]. The RE sources are also referred as alternative 

mainly due to their inconsistency to supply the demand uninterruptedly in some specific 

conditions [11]. Consequently, the performance improvement of alternative energy sources is 

inevitable to accomplish the future demand of energy in the world [12]. The latter can be 

achieved by addressing the constraints related to the design, efficiency, performance prediction 

of the existing RE system, and weather parameter estimation of the region, where the station is 

installed. The global energy consumption data in different fields, including the crude oil, oil 

products, natural gas, coal, and renewables, etc. are available in the Global Energy Statistical 

Yearbook by Enerdata [13]. According to their latest published information on 2015, the total 

production and consumption of energy in the world is rising year by year as shown in the Fig. 

1(a). Fig. 1(b) represents the information of top ten countries in the world, having maximum 

consumption of energy in the year 2014. China has been the largest energy consuming country 

from 2009 to 2014, though a reduction of 7 million tons of oil equivalent (Mtoe) in the year 

2014 compared to the year 2013 is noticed [13]. China and USA have energy consumption 

greater than 1000 Mtoe from 2000 to 2014. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.    (a) Total consumption of energy in last ten years (2005–2014) in the world, and 

         (b) top ten countries with the maximum consumption of energy in the year 2014 

[13]. 
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Most of the countries in the world, including the top ten listed in Fig. 1(b) were trying 

to include RE as a major constituent of their total energy production. RE sources in China are 

showing increasing in growth, but their preliminary predictions are not even close to being 

fully used. Republic of China RE Law and associated conventions have encouraged the 

additional utilization of RE resources [14]. The similar trend is also followed by many small 

developing countries like (i) Former Yugoslav Republic of Macedonia (FYROM), where the 

first wind power plant was completely installed and operating successfully with the total 

capacity of around 50 MW in 2014, the projected annual production is about 125 GW/h to 

supply the need of 60,000 people (total population of the country is about 2.1 million) [15]; (ii) 

Uruguay (population 3.4 million) is producing 94.5% of its energy demands from renewables 

[16]; (iii) Costa Rica (population 4.8 million) is using maximum renewable and target 100% 

renewables for the power production by 2021. The European Union (EU) regulations on the 

RE decided to achieve a target of 20% of RE production in the total energy consumption of EU 

by 2020 and 27% by 2030 [17]. Fig. 2 exhibits the share of renewables in electricity production 

by top ten countries in the world for the year 2014, from which it is obvious that the world is 

focusing additional attention on the alternative ways of energy production [13]. The research 

and development in the RE have been in full swing within the past few years. A total of 24248 

research reports was published in the literature by the numerous research groups worldwide, 

focusing on the different issues related to the RE domain in between the years 2012–2014 [18]. 

It results in a total citation count of 144911 [18]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. A contribution of renewables in electricity production in the year 2014 [13]. 

 

Fig. 3(a) shows the total number of publications related to the RE sustainability and 

environment in top ten scientific journals in between the years 2012–2014. The citation counts 

of top ten scientific journals in the similar period of time are represented in the Fig. 3(b). The 

advancement in the RE domain specifically in the sources, county-wise application, future use, 

environmental effect, production methods, storage, management, distribution, allied policies 
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and limited technical limitations, etc. are detailed in several review reports [7–12,19–35] 

available in the literature. The most prioritized research in RE domain includes: life cycle 

assessment (LCA) [27,36–40], search and analysis of novel sources [41–45], social, economic 

and environmental effects [46–48], effective storage and relocation system [49–51], planning 

and design of grid integration and supply systems [52–54], electrification in rural area of 

developing countries [55–57], data acquisition and monitoring systems [58–61], country and 

region wise assessment of development and availability [23,35,62–70] and many more. 

Decision systems have been developed for several aspects of RE such as in the evaluation of 

prospective, using geographical information system (GIS) database [71], structuring of projects 

[72], planning for diffusion [73], and selection of project [74]. 

Optimization in RE is reported in several studies, like in control strategy for hydrogen 

storage [75], a community-based hybrid system [76], configuration of power generating system 

[77,78], scheduling of micro-grid [79]. Besides that, simulation and optimization of hybrid RE 

system, including the solar, wind, and other sources are designed and evaluated [80–82], 

modeling for high percentage of combined heat and power production (CHF) and wind power 

[83], solar radiation modeling [84], induction generator [85] are also described. 

Adaptability in any field is always mandatory for additional advancement with the 

passage of time; it is also true for the RE. Since the scope of technology is developing day by 

day, the application of the previous becomes an essential part of each of the research and 

development domain currently. Specifically, the use of a machine which acts intelligently to 

tackle the problems is preferred in most of the research domains. Artificial Intelligence (AI) 

focuses mainly on developing intelligent machines and software for specific problems [86]. It 

has countless applications in most of the research domains, including the food, health, safety, 

education, business, agriculture, art, etc. [87]. AI also plays a substantial role in the 

advancement of RE. Importance of AI in RE specifically in solar radiation and wind speed 

prediction, prediction of energy intake of a solar building and heating loads of buildings, 

modeling of room heater, load and short-term electric power forecasting, sizing photovoltaic 

systems, wind and solar power modeling and forecasting, electrical load prediction of the city 

and supermarkets, etc. is summarized in the studies [88–95]. Though most of the previous 

reports cover the application of artificial neural network (ANN) based approaches in RE, 

therefore the main focus of the present study is to review the applications of different AI 

techniques including the ANN, applied in the RE in recent few years. Precisely, the 

performance of AI methods in the progress of Wind Energy, Solar Energy and other significant 

sources of RE is detailed. Besides, the impact of hybrid AI approaches in single and hybrid RE 

system have been thoroughly discussed and summarized. 
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Fig. 3. Research reports published (a) from 2012 to 2014 in top ten journals, and (b) citation 

of reports published from 2012 to 2014 in top ten journals [18]. 

 

 

2. SIGNIFICANT RENEWABLE ENERGY SOURCES 

RE types, according to the source of generation, mainly include wind energy, solar 

energy, hydro energy, geothermal energy, bioenergy, ocean energy, hydrogen energy, hybrid 

RE, etc. [1–5]. A schematic diagram representing different renewable energy sources is shown 

in the Fig. 4. A short description of some most significant types of RE is as follows. 

 

2.1. Wind energy 

The motion of earth and unbalanced incidence of the sun rays on the surface of the earth 

(more on equator than the pole) causes wind [96,97]. The application of the wind as a 

significant source of energy by converting its kinetic energy into the mechanical energy, with 

the windmills and the wind turbines, is ongoing for many centuries till now. Past evidence was 
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found in Persia and China (200 BCE), Netherlands (1300–1875 CE) to the modern 

advancement in the USA (1850–1970) [98–100]. The first wind turbine of capacity 12 kW was 

installed in Ohio, USA in 1887–1888 [100]. Thereafter numerous wind turbines of enhanced 

capacity were installed in different countries to accomplish the demand of electricity. The 

installed wind power capacity of top ten countries of the world in between the years 2006–

2015 is shown in Fig. 5(a), while the installed capacity of the EU in the similar duration is 

demonstrated in the Fig. 5(b) [101,102]. China has a maximum number of installed wind power 

units between the years 2010–2015 (Fig. 5(a)). An obvious improvement in the installed 

capacity of wind power in USA and Germany is also noticeable in the similar duration. An 

overall growth rate of 9.96% is obvious in installed wind power capacity in the year 2015 

compared with last year capacity in EU [102]. Also, the annual installation is increased from 

48 GW in the year 2006–141 GW in the year 2015 with an annual growth rate more than 9% 

[102]. Vestas V161 is the largest (height 220 m and diameter 164 m) and most powerful (8 

MW) wind turbine in the world was installed at the Danish National Test Centre, Denmark in 

2014 [103]. A detailed overview of research and development in different aspects of wind 

energy [104–111] including the available resources and uses [104], policies worldwide [105], 

existing technology [106,107], environmental impact [108], influence of climate changes 

[109], storage schemes [110], and monitoring and error diagnosis [111] were summarized in 

different review reports. In the past decade (2005–2014), a tremendous amount (80.59%) in a 

number of scientific reports in the wind energy research is noticed compared to (1995–2004) 

(Fig. 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Categories of renewable energy and their sources [96–195]. 
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Fig. 5. Installed wind power capacity (a) different countries, and (b) EU in between the years 

2006–2015 [101,102]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Published scientific reports of wind energy research (web of science,[416]). 

 

2.2. Solar energy 

Sun is a vital source of energy for the entire living creature on the earth. Solar radiation 

is being used for several purposes by human being since many centuries [112–114]. The first 

recorded evidence is available from 7th century B.C. when the sun ray was used to make fire 

after concentrating with glass. A detailed record of the historical development of solar energy 

from ancient time (7th Century BCE – 1200s CE) to the modern era (1767–2001) available in 

[112]. The major breakthrough was attained in the year of 1839 with the discovery of 

photovoltaic effects. The solar energy is used mainly with active systems (Photovoltaic, 

Thermal, etc.) and passive systems. Photovoltaic is the process of transforming the solar energy 

for electricity production [115], while in the Thermal process first the solar energy is 

transformed into some mechanical energy thereafter used for the electricity production (Fig. 4) 

[113–115]. The passive system gathers and distributes the solar energy in building without 

using any electrical device like in the active systems described before [116]. The development 

of solar elements in RE for improved efficiency and quality is organized in following areas: 
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novel and efficient materials [117–120], global policies [121], design [122], application 

[123,124], storage [125], low energy buildings [126]. Mathematical modeling of solar energy 

systems is also summarized in several reviews [127–130]. Fig. 7 represents the available 

published reports on the solar energy research available in the web of science. In the past 

decade (2005–2014), a remarkable increment (73.29%) in a number of scientific reports in the 

solar energy research is noticed compared to (1995–2004). 

 

 

 

 

 

 

 

 

 

Fig. 7. Published scientific reports of  solar energy research (web of science,[416]). 

 

2.3. Geothermal energy 

The gradual decay of radioactive elements in the earth results in the formation of lava. 

The movement of Tectonic plates breaks the Lava, which generates a geothermal reservoir (a 

source of geothermal energy) [131–133]. According to the ways of electric power generation 

from the geothermal reservoir, the geothermal energy is divided into three categories (Fig. 4). 

The research and development in the field of geothermal energy are summarized in several 

reviews [134–145] based on determination of available resources [134], current status of 

technology [135,136], and uses, benefits and application [137–139], characteristics and effect 

[140], environmental issues [141], and legal status of use [142]. Modeling and simulation of 

geothermal energy is also described in many studies [143–145]. A variation of the total number 

of published research reports related to the geothermal energy in between the years 1945–2014 

is shown in the Fig. 8. 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Published scientific reports of geothermal energy research (web of science, [416]). 
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2.4. Hydro energy 

Hydro energy is a process to generate electricity by using the natural (waterfall) or 

controlled motion of water (using an artificial barrage on the river) [146–148]. According to 

the capacity of power generation hydropower plants were categorized into three main types 

(Fig. 4). Many reviews summarize the research and development in the field of hydro energy 

[149–159] specifically, storage plant and their limitations [149,150], reservoir management 

and operations [151,152], hydrokinetic energy conversion system [153,154], slit erosion 

techniques in hydro turbines [155], optimal installation of small hydropower systems [156], 

socio-technical limitation of hydropower plant in developing countries like Nepal [157], 

environmental protection by minimizing the methylmercury concentration in hydroelectric 

reservoirs [158], and mathematical modeling [159]. A number of published research reports 

related to the hydro energy in between the years 1945–2014 is shown in the Fig. 9. It represents 

maximum research outcomes based on research of hydro energy in the duration of years 2005–

2014. 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Published scientific reports of hydro energy research (web of science, [416]). 

2.5. Ocean energy 

Ocean energy is a part of hydro energy, in which the electricity is generated from the 

sea in three categories: using the mechanical energy of (i) wave, (ii) tides and (iii) thermal 

energy of the sea (Fig. 4) [160,161]. Research and development in the field of ocean energy is 

summarized in several review reports [162–167], especially, wave and tidal energy review 

[162], development and challenges [163], the financial side [164], wave energy transformation 

technology [165], future visions [166], modeling [167]. The published report related to the 

ocean energy research in between 1945 and 2014 is given in Fig. 10. It represents the gradual 

growth in the research outcomes in the years 1975–2014 and maximum outcomes in the last 

decade (2005–2014). 
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Fig. 10. Published scientific reports of ocean energy research (web of science, [416]). 

 

2.6. Bioenergy 

In this category of RE, the electric power is generated using sources like wood, organic 

wastes, agricultural byproducts and wastes, algae, microorganism, vegetable oils, etc. [168–

170]. Several review reports [171–180] compiles the significant research and development in 

the field of bioenergy, particularly, worldwide production and consumption of bio-ethanol 

[171], Microalgae in biodiesel production and application [172], microbial fuel cells in 

bioenergy [173], bio-conversion processes of organic substrate into the bioenergy [174], 

pyrolysis of bio-mass to bio-oil [175], energy production from biomass [176], logistic issues 

of bioenergy production [177], Bio-refineries [178], status of bioenergy in EU [179], future of 

the global bioenergy [180]. Fig. 11 represents the published reports related to the bioenergy 

research in between the years 1945–2014 obtained from the web of science. More than 10,000 

of research reports are published in between the years 2005–2014. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Published scientific reports of bioenergy research (web of science, [416]). 

 

http://globalpublisher.org/journals-1006/


 
 

Energy Perspectives  

Volume 2, Issue 1, March 2021 

http://globalpublisher.org/journals-1006/  

  
 

 

www.globalpublisher.org   72 

 

 

2.7. Hydrogen energy 

Each of the fuel products (hydrocarbon) contains hydrogen as an integral constituent, 

which is separated from the previous for the independent applications of the latter. Besides 

that, electrolysis process of water and the biological process of bacteria and algae also 

discharges hydrogen, which creates high energy after burning and used as a RE source for 

electric power generation [181,182]. Fuel cells are commonly used for the latter process. 

Hydrogen energy continuously supplies the demand of electricity, which is a limitation of the 

wind and solar energy based RE systems [181–183]. The most significant research and 

development outcomes in the field of hydrogen energy are summarized in several review 

reports [184–190], mainly, present status [184], photo-production of hydrogen [185], 

influencing factors in hydrogen production [186], storage process [187], hydrogen fuel cell 

[188], present and future strategies of hydrogen [189], technical situation and economic part 

[190]. Published research reports based on the hydrogen energy research in between 1945 and 

2014, obtained from the web of science is shown in the Fig. 12. A gradual improvement in the 

number of published scientific reports is obvious from 1975 to 2014. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Published scientific reports of hydrogen energy research (web of science, [416]). 

 

2.8. Hybrid renewable energy 

A hybrid RE system combines multiple RE sources with the objective to improve the 

efficiency and stability of power sources than what could be achieved using a single RE source. 

Some of the commonly used hybrid RE sources include PV-diesel, Wind-diesel, PV-hydrogen, 

Wind hydrogen, etc. (Fig. 4) [191–193]. Research and development outcomes in the field of 

hybrid RE are reviewed in several published reports [194–200], especially, applications [194], 

configuration and control [195], optimal design [196], software tools for integration [197], 

current status and future potential [198], storage system [199], and mathematical modeling 

[200]. Fig. 13 represents the number of published research reports based on the hybrid RE 
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research obtained from the web of science in between the years 1945–2014. Maximum research 

reports are available for the duration of 2005– 2014. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Published scientific report on  hybrid RE research (web of science). 

 

3. ARTIFICIAL INTELLIGENCE (AI) 

Artificial Intelligence tries to understand human thinking in order to build smart entities 

that will perform efficiently for some complicated problems [201–203], even, though the 

understanding of the complex thinking of a human brain is a tough issue to be resolved. The 

development in the domain of AI reduced the burden of manual computation [204–206]. Only 

a few areas outperform the natural brain performance, whilst others have already been 

surpassed with the development of the technology like computer machines, built to do several 

thousand calculations per second while this would be impossible for an average human brain 

[206]. The AI is applied in the several fields, including the database, accounting, information 

retrieval, product design, production planning and distribution economy and industry, 

medicine, food quality monitoring, biometric and forensic, etc. [201–204]. AI is based on 

several learning theories like statistical learning, neural learning, evolutionary learning, etc. 

[201–205]. Amongst these, neural learning is most commonly used in several applications. 

ANN is the most fundamental technique of neural learning. The ANN established in 1943 by 

McCulloch and Pitts with the hypothesis of the mathematical model for a primitive cell of the 

brain (neuron). The neuron is triggered when the weighted sum of input exceeds a threshold 

value which results in an output as a response of some activated function. The ANN is able to 

adjust its values to fix the error from the output, which makes it more powerful learning tool 

[207]. Fig. 15 shows the schematic representation of a simple ANN model based on the 

mathematical neuron. Some of the core types of the ANNs are the Feed-forward neural 

networks, Radial basis function neural networks (RBFNN), Kohonen self-organizing network. 

Besides, the neural learning, statistical and evolutionary learning based techniques were also 

used in different practical applications. Some of the statistical learning techniques in AI are 

Bayesian and naïve Bayes models, clustering, hidden Markov model, nearest neighbor model, 

etc. [208]. Also, the popular evolutionary learning methods include genetic algorithm (GA), 

particle swarm optimization (PSO), ant colony optimization (ACO), bees algorithms, etc. 
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[209]. For the past few years, hybrid methods of AI are also being used in many applications 

with the objective to get the better accuracy than what could be achieved using a single method. 

Some of the hybrid AI methods are (i) Neuro-fuzzy (combination of ANN and fuzzy inference 

system); (ii) Neuro-genetic (combination of ANN and genetic algorithm, the latter is used for 

the connection optimization of previous); (iii) Fuzzy-genetic (combination of fuzzy inference 

system and genetic algorithm, the latter is used in the optimization of the decision boundary of 

the previous) and many other kinds will be available in future [210]. In the present study, both 

the single and hybrid Artificial Intelligence techniques in the RE research mentioned earlier 

are reviewed in detail in the next section (Fig. 14). 

 

 

 

 

 

 

 

 

 

Fig. 14. A simple architecture 

              of ANN method[416]. 
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4. ARTIFICIAL INTELLIGENCE IN RENEWABLE ENERGY 

AI is used in almost each of the type of RE (wind, solar, geothermal, hydro, ocean, bio, 

hydrogen and hybrid) for the design, optimization, estimation, management, distribution, and 

policy. A simple demonstration of different types of RE sources and applications of AI is shown 

in the Fig. 15. The details of AI application for specific RE are as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. A schematic representation of application of AI in different sources of RE[416]. 

 

4.1. AI in wind energy 

The role of AI in wind energy is summarized in past few reviews [91,95,211–213]. In 

detail, a brief review of physical model, statistical model, correlation model and neural network 

models for wind speed and generated power estimation was presented by Lei et al. [91] and 

Foley et al. [95]. In another related study by Colak et al. [211], a brief review of data mining 

methods for wind power estimation in four categories (very short, short, medium, and long 

terms) have been described. Probabilistic models for wind power estimation in three categories 

are compiled by Zhang et al. [212]. Tascikaraoglu et al. Have briefly reviewed the combined 

techniques for short term wind speed and power estimation [213]. 
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The prominent research and development in the application of AI in wind energy 

contain approaches from three main categories: neural, statistical and evolutionary learning and 

their combination as hybrid AI techniques [214–243]. Most of the research work focus on the 

prediction of wind speed and wind power using the neural learning approaches of AI [214–

216]. Feed-forward backpropagation neural network (BPNN) is used in the estimation of wind 

power over a period of 3 years from seven wind farms by Mabel et al. [214]. The BPNN has a 

worthy prediction accuracy (root mean square error (RMSE) 0.0070 for the training data set 

and 0.0065 for the test data set). Three different types of ANN methods BPNN, RBFNN, and 

adaptive linear element network (ADALINE)) have been used in wind speed estimation from 

two different sites; also, the performance of three models is compared [215]. The performance 

of ANN methods varying according to the location of wind farms, like BPNN results in the 

best performance for one site (minimum RMSE 1.254) while for another, the best performance 

is achieved with the RBF method (minimum RMSE 1.444). Mabel et al. [216] have optimized 

the configuration of BPNN by trial and error in estimation of wind power. Using the wind 

speed, relative humidity, and generation hours as the inputs, a 3×5×1 ANN model results in the 

best estimation performance (mean square error (MSE) 7.6×10−3). 

The performance of ANN methods is not consistent, therefore, some alteration is 

proposed in ANN with the objective to improve its efficiency [217], as well as other methods 

were also included for comparison in some studies [218–222]. Kariniotakis et al. [217] 

implemented an advanced version of ANN (recurrent high order neural networks) for wind 

power estimation. The performance of ANN model is compared with the naïve Bayes (NB) 

method. The ANN results in minimum RMSE 4.2 compared to the NB. BPNN method was 

used in spatial forecasting of wind speed in the Marmara for the years 1993– 1997 [218]. The 

performance of ANN model is compared with the Trigonometric point cumulative 

semivariogram (TPCSV) method. ANN results in a better correlation coefficient between the 

actual and predicted wind speed for most of the months and sites, for instance for Canakkale 

site and in the month of January, the correlation coefficients were 0.95 for ANN and 0.88 for 

TPCSV. Alexiadis et al. [219] have demonstrated the significant improvement (20–40%) in the 

estimation accuracy of the wind speed and wind power by using the BPNN method compared 

to the persistence forecasting model. Li et al. [220] have used Bayesian combination (BC) 

method, and ADALINE, BPNN and radial basis function neural network (RBFNN) methods 

in wind speed forecasting from the two wind farms. The BC method results in consistent and 

better estimation result (RSME 1.5) compared with the ANN methods. A detailed comparison 

of twelve estimation techniques including the linear (ARMA) methods, neural logic network 

(NLN) non-linear ANN methods in the analysis of hourly wind speed time series data has been 

reported [221]. NLN exhibit the best performance (RMSE 4.9%) compared with other methods. 

Cadenas et al. [222] have used BPNN in the wind speed forecasting of data obtained from wind 

farm Chetumal, Quintana Roo in Mexico over the duration of two years from 2004 to 2005. 

The performance of ANN is compared with the single exponential smoothing (SES) method. 

The earlier method performs better (mean absolute error (MAE) 0.5251) compared with SES 

method (MAE 0.5617). 

In some studies [223–225], fuzzy logic [223], as well as their combination with the 

ANN methods was also studied in wind power forecasting. Fuzzy logic was used to design a 
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wind generation system (3.5 kW) by Simoes et al. [223]. The developed system performs 

satisfactorily and has field application capability. Sideratos et al. [224] implemented the 

combination of ANN, RBFNN, and fuzzy logic techniques for estimation of wind power. The 

analysis outcomes are effective in the operational planning of wind farm 1–48 h ahead. The 

BPNN and fuzzy methods have been used in wind speed estimation by Monfared et al. [225]. 

The proposed methods perform better than the traditional one (RMSE 3.30 and 3.27 for two 

methods respectively in one of the case). Some statistical approaches were discussed in 

[226,227]. Juban et al. [226] proposed a probabilistic method for short-term wind power 

estimation. The procedure is based on kernel density estimation and results in predictive 

probability density function for estimation. The reliability of the model lies in between (2–4%), 

which is comparable to that found in similar research. The support vector machines (SVM) 

method was used by the Mohandes et al. [227] in wind speed prediction of the wind data from 

the Madina, Saudi Arabia. Also, the performance of SVM is compared with the multilayer 

perceptron (MLP) neural networks. SVM achieve less estimation accuracy (MSE 0.009) 

compared with the ANN method (MSE 0.0078). The adaptive neuro fuzzy inference system 

(ANFIS) (a hybrid of neural and fuzzy methods) has been used in some studies [228–231] with 

the objective to further improve the performance of ANN method. ANFIS is used by Potter et 

al. [228] to estimate wind power in a very short term basis utilizing wind power data from 

Tasmania, Australia. MAE is always less than 8 for analysis of wind data in a different session 

of the year. Mohandes et al. [229] have estimated the wind speed up to a height of 100 m using 

the wind speed information at heights 10, 20, 30, and 40 m by using ANFIS. The ANFIS 

predicted wind speed at the height 40 m has 3% mean absolute percentage error (MAPE) 

compared with the actual wind speed at the same height. ANFIS method is used by Yang et al. 

[230] in interpolating the missing wind data measured from the twelve wind farms in China. 

The RMSE in between the ANFIS predicted and actual measured wind speed was 0.230. 

Meharrar et al. [231] have designed maximum-power-pointtracking (MPPT) based on ANFIS 

wind generator. The ANFIS is used in the estimation of the rotational speed of wind turbines 

using wind speed as the input. The ANFIS has effective performance (error 0.005) in training. 

Besides ANFIS, the combination of ANN is tried with some other methods for prediction 

performance improvement [232–235], for instance, BPNN in combination with the wavelet 

analysis (WT) is used for the fault diagnosis of the wind turbine gearbox by Yang et al. [232], 

which successfully detected two normal cases, two gentle fault cases, three fault cases and one 

bad fault case. Evolutionary algorithms (EA) (i) particle swarm optimization (PSO) and (ii) 

differential evolution (DE) have been implemented by Jursa et al. [233] for the selection of 

input variables and parameters of ANN and nearest neighbor models used in the short term 

wind power estimation. The PSO optimized ANN results, 2.8% improvement in prediction 

accuracy compared with the manually structured ANN. Guo et al. [234] have developed an 

improved version of the empirical mode decomposition (EMD)-feedforward neural network 

(FNN) method for wind speed estimation. Modified EMD-FNN results better performance 

(MSE 0.1648) than the FNN (MSE 0.1511) and EMD-FMM (MSE 0.1296). An ANN-Markov 

chain (MC) method has been proposed by Pourmousavi et al. [235] for short term wind speed 

estimation. The ANN-MC has less error (94.84) compared with the ANN (96.05) for higher 

margins. 
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Some other hybrid AI approaches were also described [236–243]. Damousis et al. [236] 

developed Fuzzy methods using the two GA algorithms (real coded GA and binary coded GA) 

for wind speed and power estimation. The wind energy data from the remote location were 

received by using the wireless modems and analyzed with the Fuzzy method which results in 

29.7% and 39.8% higher accuracy for the next hour and longtime respectively than the 

persistent method. A hybrid wind-forecasting technique is developed and examined by Hu et 

al. [237] by combining ensemble empirical mode decomposition (EEMD) and SVM methods. 

Average monthly wind speed from three different sites in China was estimated using the 

proposed hybrid method. EEMD has MAE 0.12 compared with two traditional time series 

methods: autoregressive integrated moving average (ARIMA) and seasonal autoregressive 

integrated moving average (SARIMA), SVM, and EMD-SVM. A different hybrid model using 

ARIMA and BPNN methods was developed and used in wind speed forecasting for three 

different locations in Mexico by Cadenas et al. [238]. The hybrid method has MSE 0.49 

compared with the ANN (MSE 5.65) and ARIMA (MSE 4.1). Salcedo-Sanz et al. [239] have 

proposed hybridization of the 5th generation mesoscale model (MM5) with the ANN method 

for short term wind speed forecasts for the thirty-three wind turbine data sets. 

The output of MM5 is used in the ANN method which results in better estimation 

accuracy with the MAE in between 1.45 and 2.2 m/s for the different number of neurons (9−15) 

in the hidden layer and locations of the wind turbine. Liu et al. [240] have developed a hybrid 

AI method by using deep quantitative analysis, WT, GA and SVM methods. GA is used in 

tuning the parameters of SVM. The WT-SVM-GA model achieved better performance (MAE 

0.6169) compared with the persistent method (MAE 0.8356) and SVM-GA (0.7843). A novel 

hybrid model for wind speed prediction was developed by Kong et al. [241] by using the 

improved version of support vector regression (SVR) referred as reduced support vector 

machine (RSVM), principal component analysis (PCA), and particle swarm optimization 

(PSO) for parameter optimization of RSVM. The RSVM exhibits effective estimation 

accuracy. Rahmani et al. [242] developed a hybrid intelligent technique based on the 

combination of two meta-heuristic techniques: ant colony optimization (ACO) and particle 

swarm optimization (PSO) for hourly wind power estimation of forty-three wind turbine data 

sets using wind speed and temperature inputs. The hybrid method performs best MAPE 3.5% 

compared with ACO (MAPE 5.8%) and PSO (MAPE 10.5%). Pousinho et al. [243] have 

proposed a hybrid method by using WT, PSO and ANFIS for risk optimization in wind energy 

trading. This hybrid approach is applied for wind farm data analysis in Portugal. The expected 

profit was estimated successfully in between 18719 € and 18487€ for different values of risk 

level in between 0 and 1. A complete summary of describing research work in [214–243] is 

presented in Table 1. 
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Table 1 

Summary of reports for application of AI approaches in wind energy [214–243]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. AI in solar energy 

Importance of AI in solar energy applications is summarized in reviews 

[89,90,92,94,244,245]. Particularly, the detail applications of ANN methods in modeling and 

design, heating load of the building, etc. is summarized in [89]. Mellita et al. [90] have briefed 

detail research based on the application of AI in modeling of weather data, and sizing, 

modeling, simulation and control of PV systems. Mellita et al. [92] have also reviewed the uses 

of AI techniques in the sizing of individual and grid-connected PV systems. Building energy 

consumption estimation using statistical and AI methods has been compiled in [94]. Dounis et 

al. [244] summarized the application of agent-based intelligent control systems for energy 

management of buildings. AI techniques in modeling and forecasting of solar radiation data 

are discussed in [245]. 

The research in solar energy contains the application of both the single and hybrid 

approaches of AI [246–285]. ANN is the most used method in solar energy research [246–

258]. ANN is used in solar irradiance prediction for PV connected with the grid [246]. A 

correlation of 98–99% for sunny days and 94–96% for cloudy days between the actual and 

predicted solar irradiance is achieved. 

Global solar radiation (GSR) is forecasted with the BPNN using temperature and 

humidity as inputs over the years (1998–2002) [247]. The RMSE value was 2.823×10−4 in 

between the actual and BPNN predicted GSR for the year 2002. BPNN is used in performance 

estimation of a solar water heating system by Kalogirou et al. [248]. 

The higher values of coefficient of determination (R2 0.9914 and 0.9808 for extracted 

energy and the maximum temperature rise respectively) confirm the better performance of 
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BPNN. Beam solar radiation was estimated using the BPNN by analyzing the data from eleven 

different stations. The RMSE between the actual and model predicted values of radiation lies 

in between 1.65 and 2.79% [249]. A BPNN of 3×6×1 is used in daily ambient temperature 

estimation with RMSE 1.96 [250]. Daily solar irradiation was estimated using the BPNN with 

RMSE (5.0–7.5%) [251]. The maximum power of high concentrator photovoltaic (HCPV) 

system was predicted using the BPNN with RMSE 3.29% [252]. Monthly average daily global 

solar irradiation was estimated using the BPNN with the 0.97 correlation between the actual 

and predicted solar irradiation [253]. Solar energy output, and hot water quantity were 

estimated using the BPNN with R2 0.9978 and 0.9973 respectively [254]. Solar radiation was 

estimated using the BPNN in Nigeria with R2 0.971 using latitude, longitude, altitude, month, 

mean temperature, mean sunlight duration, and relative humidity as input variables [255]. 

BPNN is used to estimate the energy intake of a passive solar building (wall thickness (15–60 

cm) with R2 0.9991) [256]. In another study, BPNN results in 94.8–98.5% prediction rate in 

the building energy consumption prediction for the insulation thickness of 0–2.5–5–10–15 cm, 

orientation angles 0–80° and the transparency ratios 15–20–25% [257]. 

In some studies [258–261], the performance of BPNN model is compared with the other 

methods. BPNN is used by Tasadduq et al. [258] in the estimation of ambient temperature 24 

h ahead and the performance of BPNN is compared with the batch learning ANN. The achieved 

values of mean percentage deviation (MPD) were 3.16, 4.17 and 2.13 with BPNN for three 

years. Diffuse solar radiation is predicted by Alam et al. [259] using the BPNN on an hourly 

and daily basis with RMSE of 4.5% compared to other empirical methods (EKD, Page, etc.) 

(RMSE 37.4%). Tymvios et al. [260] have used BPNN and Ångström's linear methods in global 

solar radiation prediction. The performance of BPNN method is comparable (RMSE 5.67–

6.57%) to Ångström's linear method. BPNN method is used in global solar radiation estimation 

of the eight cities of China over the years 1995–2004, and the performance is compared with 

the empirical regression methods. The BPNN performs better than the empirical regression 

methods with minimum RMSE 0.867 [261]. Besides ANN, some other techniques were also 

implemented in solar energy analysis [262–265]. For instance, SVM method is used in the 

prediction of short-term solar power and its performance is compared with the autoregressive 

(AR) and RBFNN [262]. SVM method (MAE 33.7 W/m2) performs better than the RBF (MAE 

43 W/m2) and AR (MAE 62 W/m2) methods. Li et al. [263] have used SVR for solar PV 

energy production estimation and compared its performance with the ANN. The RMSE for the 

two methods were almost similar. The performance of the RBF-SVM method is compared with 

the existing forecast methods (PPF and Cloudy) in the estimation of solar power generation. 

SVM exhibits 27% higher estimation accuracy than other two methods [264]. 

Some evolutionary AI methods were also used in solar energy applications [265–267]. 

Mashohor et al. [265] suggested, GA in solar tracking for improved performance of PV 

systems. The GA with initial population size 100, 50 epochs and probability of crossover and 

mutation 0.7 and 0.001 respectively results in the best GA-Solar system. The low value of 

standard deviation (1.55) in generation gain also proves the better efficiency of the system. GA 

is used in the optimal design of a solar water heating system. Specifically, the plate collector 

area is optimized with the GA to 63 m2 that results in solar fraction value 98% [266]. Kumar 

et al. [267] have used GA in maximum power point tracking (MPPT) of PV array connected to 
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the battery. The performance of the GA is compared with the traditional perturb and observe 

(PO) algorithm. The boost converter achieves the line voltage of 400 V. 

 

The combination of AI methods was also reported to improve the prediction efficiency 

[268–274]. The performance of an integrated collector storage (ICS) solar water heater is 

predicted using the combination of ANN and TRNSYS with the R2 value 0.9392 [268]. 

Monteiro et al. [269] have used GA in parameter optimization of HIstorical SImilar Mining 

(HISIMI) model for power prediction of PV system. The performance of GA+HISIMI model 

(RMSE 283.89) is compared with the BPNN (RMSE 286.11), and classical persistence (RMSE 

445.48) methods. The combination of RBFNN and infinite impulse response (IIR) filter is used 

for size optimization of PV system in the Algeria [270]. Optimal sizing coefficients were 

determined using the RBF+IIR method and its performance is compared with the classical 

models, BPNN, RBFNN and MLP+IIR methods. The sizing coefficients were estimated 

accurately (correlation 98%) with the RBF +IIR method. A combination of WT and BPNN 

was used in solar radiation values estimation [271]. The performance of WT+BPNN (accuracy 

97%) was observed better than the classical methods (AR, ARMA, MTM), BPNN, recurrent 

and RBFNN methods. Solar power output is predicted by using GA optimized BPNN without 

using the exogenous inputs [272]. The performance of GA+BPNN is compared with the 

persistent model, ARIMA, k-nearest neighbor (KNN) and BPNN methods. The GA+BPNN 

results in the minimum RMSE 72.86 kW. Mandal et al. [273] have used the combination of 

WT and RBFNN in the prediction of PV system power and compared its performance with the 

WT+BPNN, RBF, and BPNN. The WT+RBF have minimum RMSE 0.23. Group method of 

data handling (GMDH)- NN and GA are used in optimization of the economic benefits of solar 

energy [274]. The optimal solution results in 3.1–4.9% increment in life cycle savings. 

ANFIS method is used in several studies [275–280] like in the modeling of PV power 

supply system with accuracy 98% [275], prediction of hourly global radiation using the satellite 

image data [276], clearness index and daily solar radiation prediction with RMSE 0.0215–

0.0235 [277], modeling of PS power supply [278], predicting solar radiation using the mean 

temperature and sunshine duration [279], performance prediction of solar chimney power plant 

(SCPP) [280]. Several hybrid AI techniques were also used in solar energy systems [281–285], 

like hybrid evolutionary optimization of ANN using the PSO and GA in the estimation of PV 

power [281]; Genetic swarm optimization (GSO) of BPNN for PV system energy estimation 

[282]; solar radiation prediction using the combination of ARMA and time delay neural 

network (TDNN) [283]; power prediction of PV connected to the grid using the hybrid of 

seasonal auto-regressive integrated moving average (SARIMA) and SVM methods [284]; 

hybrid of SVM and Firefly algorithm (FFA) is developed for GSR estimation and performance 

is compared with the BPNN and genetic programming (GP) methods (RMSE 1.8661 for SVM-

FFA). The findings of AI techniques for solar energy systems are summarized in Table 2 [246–

285]. 

 

4.3. AI in geothermal energy 

AI approaches have been used in geothermal applications, which are summarized in 

reviews [286–290]. Particularly, the prospective of AI approaches with sensors and robots in 
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geothermal well drilling design, control, and optimization is briefed in [286]. Computer 

simulation and modeling of geothermal reservoir and its effect of geothermal energy progress 

are reviewed in [287]. Similarly, in other reviews by Sanyal et al. [288] numerical simulations 

for enhanced geothermal systems and for geothermal reservoir by O'Sullivan et al. [289] are 

reviewed. In another study, a brief history of numerical modeling of geothermal reservoir is 

also presented [290]. 

Both the single and hybrid approaches of AI are used in geothermal energy applications 

[291–310] summarized in Table 3, though the ANN method is used in most of the studies [291–

303]. Esen et al. [291] have used BPNN (with Levenberg–Marguardt (LM), Pola–Ribiere 

conjugate gradient (CGP), and scaled conjugate gradient (SCG) algorithms) in performance 

prediction of vertical ground coupled heat pump (VGCHP) system. The LM based BPNN with 

eight neurons in the hidden layer results in better prediction efficiency (RMS 0.0432). Bassam 

et al. [292] have used LM based BPNN for the static formation temperature (SFT) prediction 

of the geothermal well. The BPNN with five neurons in the hidden layer results in prediction 

error < ± 5%. BPNN (with LM, CGP, and SCG) is used in the determination of an optimum 

working condition of geothermal well [293]. The BPNN with seven neurons in the hidden layer 

results in the best predicted values of generated and circulation pump power, using the vapor 

fraction of geothermal water and its temperature, and the ammonia fraction as the input (RMSE 

1.5289). ANN is used in the optimization of the power cycle like ORC-Binary using the BPNN 

(with LM, CGP, and SCG) [294]. The LM based BPNN with 14–16 neurons in the hidden layer 

result in best accuracy (RMSE 0.0001 for s1 and s2 cycles) for prediction of generating and 

required pump circulation power. The input variable of the cycle s1 is similar to that described 

in [293] though for the cycle s2 an additional input variable outlet pressure is included in the 

analysis. BPNN is used in the generation of geothermal map at different depth with less than 

5% deviation with the actual values for the 96.5% data points [295]. 
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Table 2 

Summary of reports for application of AI approaches in solar energy [246–285]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Summary of reports for application of AI approaches in geothermal energy [291–310]. 
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The LM based BPNN is used in the prediction of thermal performance and exergy 

destructions of the Afyonkarahisar geothermal district heating system (AGDHS) with good 

accuracy (RMSE 0.0053) [296]. Void fraction (VF) values of the geothermal well were 

predicted with the BPNN based on the LM training algorithm using the eight different input 

parameters. Six neurons in the hidden layer of BPNN result in best prediction accuracy (RMSE 

0.0966) [297]. The BPNN (with LM, Quasi-Newton (QN), and Bayesian Regularization (BR) 

algorithms) is used to predict the biochemical oxygen demand (BOD), ammonia-nitrogen, 

nitrate-nitrogen, and ortho-phosphatepho-sphorus of geothermal energy treating storm water. 

Best accuracy is obtained for Ammonia-nitrogen prediction with the QN based BPNN [298]. 

BPNN is used to test the effectiveness of PID controller of AGDHS which enhances the energy 

efficiency by 13% [299]. In modeling of ORC-Binary geothermal plant, BPNN with LM 

(twenty neurons in the hidden layer) for the o2 and o3 cycles and (twenty-two neurons in the 

hidden layer) for b3 type cycle results in better accuracy [300]. BPNN based on the LM and 

SCG algorithms is used for the site location planning model using the geographical information 

data [301]. BPNN is used in the conductivity map creation of ground with better accuracy (83% 

of predicted data have deviation less than 10%) [302]. BPNN based on the LM algorithm 

exhibits better prediction efficiency of pressure drop in the geothermal well by using the 

wellbore production database [303]. 

In some studies, EA and fuzzy logic were also used in the geothermal system analysis 

[304–307] like Sayyaadi et al. [304] have used the single objective-thermodynamic and 

thermoeconomic (TE) and multi-objective optimizations of vertical ground source heat pump 

(VGSHP) using the (EA), in another study six EAs (two DE, PSO, GA, Monte-Carlo random 

search, etc.) were used to locate the optimal position of borehole heat exchangers (BHEs) [305]; 

a fuzzy logic controller (FLC) system has been designed for geothermal heat in the recirculation 

aquaculture systems (RAS) [306] and to control the water temperature for the maximum RAS 

production [307]. ANFIS and hybrid AI approaches were also implemented in a few studies of 

geothermal energy analysis [308–310] like ANFIS is used for the VGSHP performance 

evaluation and compared with the BPNN methods (LM, SCG, CGP algorithms), in which 

ANFIS results in better efficiency than the BPNN methods [308]; ANFIS is used in the 

evaluation of the AGDHS system (exergy and energy rates prediction) and performance is 

compared with the BPNN methods (LM, SCG, CGP algorithms) [309]. Again, ANFIS 

performs better than the BPNN methods; GA and singular value decomposition (SVD) based 

GMDHNN is used in geothermal reservoir temperature prediction [310]. 

 

4.4. AI in hydro energy 

Application of AI approaches in hydro energy domain is summarized in reviews 

[311,312]. Particularly, the design and control of hydropower plants using traditional methods 

and modern AI approaches like GA, ANN, Fuzzy, ANFIS, etc. has been briefly presented by 

Kishor et al. [311]. In another review study by Nourani et al. [312] described the significance 

and application of wavelet pre-processor based hybrid AI approaches in hydro-climatology, 

specifically in the estimation of significant hydrologic cycle processes. 

The application of single and hybrid AI approaches in hydro energy applications [313–

327] is summarized in Table 4. BPNN approach is used in optimal scheduling the activities of 

http://globalpublisher.org/journals-1006/


 
 

Energy Perspectives  

Volume 2, Issue 1, March 2021 

http://globalpublisher.org/journals-1006/  

  
 

 

www.globalpublisher.org   85 

hydropower plants from ten reservoirs in Taiwan [313]. The BPNN is more cost effective than 

the knearest neighbor (KNN) and differential dynamic programming (DDP). Smith et al. [314] 

have implemented BPNN method in the modeling of rainfall-runoff process to estimate the 

discharge peak and time of peak of linear and non-linear reservoirs. Better accuracy of BPNN 

is achieved for non-linear reservoirs in the prediction of peak discharge and linear reservoir in 

the prediction of time to peak. BPNN model is used effectively in the steam flow prediction of 

San Juan River basin in two different seasons for seventeen years [315]. The steam flow is 

most significant factor in the hydroelectric power production. Kisi O [316] has also studied the 

river flow modeling using the BPNN with gradient descent (GD) and the performance is 

compared with the autoregressive (AR) method. BPNN estimates more precisely than the AR 

method. Estoperez et al. [317] have used BPNN in scheduling of micro-hydro power plant by 

estimating the power discharge for one month ahead (minimum RMSE 0.061). GA and [318–

320] Fuzzy [321] approaches have been also used in the hydro energy study; like Carneiro et 

al. [318] have used GA in the scheduling of hydrothermal power system in Brazil and compared 

with the outcomes from traditional non-linear programing (NP) optimization method. The GA 

has less operating cost (726,742.2 MW) than NP (745,020 MW) for the years 1971–1973. Gil 

et al. [319] have implemented a new GA (with a set of proficient operators) for a similar 

application and compared the performance with previously used GA. Yuan et al. [320] have 

developed a novel version of GA (chaotic hybrid (CH)-GA) to solve the issue of the existence 

of water delay time as a constraint in the short term hydrogenation scheduling. The CHGA 

results in a better profit compared with the standard (S)-GA and NP. The application of fuzzy 

logic based approach in the selection of optimal penstock material from Steel, Asbestos cement 

and GRP for hydro turbine is addressed by Adhikary et al. [321]. The GRP was declared as the 

ideal material with a maximum degree of index. 

The contribution of ANFIS and hybrid AI approaches in hydro energy generation has 

also been discussed in some studies [322–327]. 

The ANFIS method is used in control of Shihmen reservoir in Taiwan (in the prediction 

of water release); also the performance is compared with the M-5 rule curves [322]. The ANFIS 

exhibits better performance (less water shortage) than the M-5 rule curves. The ANFIS model 

is used efficiently in flow estimation of the Menderes River in Turkey by Firat et al. [323]. The 

performance of ANFIS is compared with the ANN and multiple regressions (MR) (minimum 

relative error 0.073 for ANFIS). The integration of ANN with the expert system is used in 

acoustic prediction (AP) and predictive maintenance (PM) of hydropower plant by using the 

Learning Vector Quantization (LVQ) and ART-MAP respectively [324]. More accurate 

predictions are obtained by the AP and PM. Sinha et al. [325] have developed GA and PSO 

tuned FLC for the automatic generation control (AGC) in hydropower system. The GA-FLC 

and PSO-FLC perform better (less peak overshoot, and settling time) than the FLC. 

A hybrid AI approach (referred as case-based reasoning (CBR)) using the hierarchical 

clustering (HC), Fourier frequency transform (FFT), Elman ANN and Modular ANN have been 

developed for the river flow estimation [326]. The performance of CBR is compared with the 

BPNN, Elman ANN, RBFNN, etc. (minimum MAE 17. 11 for CRB). BPNN in combination 

with the artificial bee colony (ABC) algorithm (particularly the BPNN is trained with ABC) is 

used to predict the hydraulic energy production in Turkey (relative error (RE) 0.23 [327]. 
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4.5. AI in ocean energy 

The use of AI approaches in ocean energy is summarized in the reviews [328–331]. 

Mainly, the role of AI in investigating the sea for the development of power supply system is 

discussed in [328]; the impact on AI in the ocean is briefed by Aartrijk et al. [329]. Several 

applications of ANN in the ocean engineering are presented by the Jain et al. [330]. Iglesias et 

al. [331] have discussed in detail about the availability of the renewable energy resources, 

especially the potential of ocean energy wave farm in Canary Islands (which will be a first 

Island in the future having 100% renewable energy). The role of some single and hybrid AI 

approaches in ocean energy were described in the studies [332–341] and main outcomes are 

summarized in Table 5. A three layer BPNN method is used in the estimation of sea level 

variation on the coast of Western Australia (correlation coefficient 0.7–0.9) [332]. One day 

forecast of ocean wave condition was done by the Londhe et al. [333] using the BPNN method 

(six different architectures for the number of neurons in the hidden layer) with good accuracy 

(67% correlation for the predicted wave height for lead times of 12 h). Three different architects 

used the BPNN method in the prediction of wave parameters using the coastal environment 

variables as input by analyzing the data collected from Tasmania during 1985–1993 (R2 0.92) 

[334]. Toprak et al. [335] have used BPNN, RBFNN and generalized regression neural network 

(GRNN) to forecast the longitudinal dispersion coefficient in streams for 65 data sets from 30 

rivers in the USA (MSE 13275 for BPNN). 

Fuzzy [336] and GP [337] methods have also been used in the study of ocean energy. 

Chen et al. [336] have developed a FLC to reduce the effect of the external ocean wave force. 

The FLC exhibits good stability. Sea level is predicted using the GP and ANN by Ghorbani et 

al. [337]. The GP prediction accuracy was better than the BPNN based on LM algorithm (MSE 

230.5–236.2). ANFIS [338] and hybrid AI approaches [339,340] have been implemented to 

achieve better prediction accuracy. Karimi et al. [338] have used ANFIS (five types with 

different membership functions) in sea level forecasting and compared the performance with 

the BPNN (LM), BPNN (CG), BPNN (GD) and eleven types of ARMA models. ANFIS and 

ANN methods result, almost similar but better than the ARMA models. A hybrid approach 

using the combination numerical wave model (NWM) and BPNN is used for wave hindcasting 

[339]. The hybrid approach performs better than the BPNN and NWM method. De-Paz et al. 

[340] have developed a hybrid intelligent system based on case-based reasoning (CVR) and 

support vector regression (SVR) for improved prediction of CO2 flux to explore the 

understanding of interaction between the air and ocean. 

 

4.6. AI in bioenergy 

A brief review of deterministic and stochastic mathematical modeling for optimization 

of forest biomass (specifically the optimum design of the supply chain) in RE generation is 

presented by Shabani et al. [341]. The use of single and hybrid AI approaches for bioenergy 

analysis is described in several research reports [342–354] and summarized in Table 6. ANN 

is applied in several studies [342–347] related with the bioenergy: like forecasting the cetane 

number (CN) and density of diesel fuel using the GRNN by Yang et al. [342]; detection of 

trace compounds like H2S and NH3 up to 93 ppm (ppm) in biogas using the BPNN (RMSE 
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416, 5.1 ppm, respectively) [343]; detection of CN in biodiesel using the BPNN, RBFNN, 

GRNN and recurrent neural network (RNN) using the fatty acid composition (the best 

performance is achieved with BPNN) [344]; estimation of methane concentration in the 

biomass from bioreactors using alkalinity, BOD, chloride, conductivity, pH, sulfate, and 

temperature as input parameter for ten types of BPNN (according to different training 

algorithms) (RMSE 0.00263-0.00250) [345]; estimation of biodiesel properties (density, 

viscosity and water and methanol content) using the multiple linear regression (MLR), 

principal component regression (PCR), polynomial and Spline partial least squares regression 

(PLS), BPNN methods and their performance comparison (the best performance is achieved 

with the BPNN compared with the rest methods) [346]; performance estimation of biodiesel 

engine (thermal efficiency and energy consumption of break, exhaust temperature, and engine 

emissions) using the load, compression ratio, blend, injection timing, pressure as inputs of 

RBFNN (accuracy 69–96%) [347]. 

 

Table 4 

Summary of reports for application of AI approaches in hydro energy [313–327]. 

 

 

 

 

 

 

 

 

Table 5 

Summary of reports for application of AI approaches in ocean energy [332–340]. 
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Table 6 

Summary of reports for application of AI approaches in bioenergy [342–354]. 

 

 

 

 

 

 

 

 

 

 

  Besides ANN, some other methods, including SVM and KNN [348], PSO [349] and GP [350] 

methods have been also implemented in bioenergy analysis. Balabin et al. [348] have 

implemented regularized discriminant analysis (RDA), PLS, KNN and SVM methods to 

classify the biodiesel into ten different classes (according to their origin) using the near-infrared 

(NIR) data. SM results in better classification accuracy than the rest three methods. A modified 

version of PSO is implemented in the optimization of biomass supply chain (flows from 

sources of production) [349]. GP and BPNN have used the higher heating value (HHV) 

estimation of biomass fuels and performance is compared with the existing HHV models [350]. 

GP and BPNN exhibit better prediction accuracy than the conventional models (RMSE 0.942-

0.987). 

Some research reports the application of hybrid AI approaches in the bioenergy analysis 

[351–354]. Koutroumanidis et al. [351] have used ARIMA, ANN and hybrid of ANN-ARIMA 

for estimation of fuelwood prices in Greece for the years 1964–2006. The ANNARIMA model 

predicts better estimation than the ANN and ARIMA methods independently (MAPE 14%). A 

hybrid system based on the combination of Fuzzy logic and ANN is used for improving the 

biomass boiler cleaning and maximizing heat transfer which saves 12 GW h/ year [352]. BPNN 

and GA based hybrid AI method is developed for the methane production from the waste 

digester [353]. The hybrid method with optimized parameters results in 6.9% increment in 

methane production. In another study, a similar hybrid method is used for the optimization of 

biogas production (from the banana stem, cow dung, paper waste, rice bran, saw dust) [354] 

which result in the biogas production of 10.280L. 

 

4.7. AI in hydrogen energy 

Petrone et al. [355] have presented briefly, a review of model based AI approaches for 

the diagnosis of proton exchange membrane fuel cell systems (PEMFCs). Similarly, in another 

study, three categories of nonmodel based approaches, including AI, statistical, and signal 

processing methods for a similar problem is detailed in [356]. The research application of AI 

approaches is described in several studies [357–382], summarized in Table 7. The ANN is the 

widely implemented method in the hydrogen energy [357–366] like three AI approaches, 
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including the BPNN, SVR and multi-gene genetic programming (MGGP) is used in the 

prediction of output voltage of microbial fuel cell (MFC) in which MGGP results in the best 

accuracy [357]; BPNN is used to predict CO2 hydrogenation activity [358]; BPNN with eleven 

training algorithm is used to predict the effect of hydrogen car engine operating conditions on 

the emission of CO2, CO, NOx, and hydrocarbons [359] (CO emission is predicted with 100% 

accuracy); BPNN trained with LM and Bayesian algorithm is used for monitoring the stability 

and detection of error in the PEM fuel cell [360]; BPNN based on LM training algorithm is 

used to predict the voltage and cathode temperature of the polymeric electrolyte membrane fuel 

cell (PEMFC) with high accuracy [361]; BPNN with the twelve different training algorithms 

were implemented for the prediction of hydrogen engine characteristics (mass air flow (MAF), 

air pressure, fuel pulse width, exhaust gas and engine temperature, and NOx emission) using 

two inputs engine speed and throttle position [362]. BPNN is also implemented in another 

studies [363–366] to predict the hydrogen engine parameter and emissions [363] (RMSE ± 

4%); for the tensile strength prediction of hydrogen-functionalized graphene [364]; to predict 

the stack voltage of the solid oxide fuel cell (SOFC) [365]; and in the power density prediction 

of MFC (RMSE 4.89×10−4 for one configuration) [366]. 

Fuzzy logic methods [367–369] and EU approaches [370–372] have also been used in 

hydrogen energy analysis: like Fuzzy logic method is used in prediction of ignition time of 

hydrogen car using three different types of membership functions [367]; recurrent fuzzy system 

is used to model the current density characteristics of SOFC [368]; Fuzzy logic controller based 

on parameter optimization with the GA is used to manage the hydrogen consumption in fuel 

cell hybrid vehicles (FCHV) [369]. Besides the fuzzy logic and GA, PSO is also used in the 

energy optimization of FCHV [370]. BPNN, GA and PCA in hydrogen production modeling 

is reviewed by Nath et al. [371]. Askarzadeh et al. have proposed the bird mating optimization 

(BMO) approach to model the PEMFC system [372]. Application of ANFIS [373–377] and 

other hybrid AI approaches [378–382] were described in many studies [378–382]: ANFIS is 

used to predict the SOFC parameters (stack current and voltage) and the performance is 

compared with the ANN method (RMSE < 2 for ANFIS in current prediction) [373]; ANFIS 

is used in prediction of several hydrogen safety parameters (like explosive limit, hydrogen 

pressure, and flow rate) using the ten input conditions [374], performance of ANFIS is 

compared with the eleven types of BPNN based on different training algorithms (RMS 1.4 in 

hydrogen pressure prediction with ANFIS); ANFIS and BPNN (LM) were implemented for 

emissions (HC, CO, CO2, NOx) prediction from the hydrogen car, BPNN shows better 

prediction than the ANFIS (RMSE 1.58% of HC emission with the BPNN) [375]; ANFIS is 

used in the performance (H2 flow rate, system and stack efficiencies) prediction of PEM 

electrolyzer (1.06% prediction error for hydrogen flow rate) [376]; ANFIS used in prediction 

of cell voltage of PEMFC efficiently [377], and performance is compared with RBFNN, and 

BPNN; a hybrid AI approach based on wavelet and fully logic method is implemented for 

energy controlling of HEV (fuel consumption of 0.06962 kMol H2) [378]; SVR and PSO based 

hybrid approach is used in temperature forecasting oh hydrogen reactor with high accuracy and 

performance is compared with the SVR and BPNN [379]; BPNN in combination with the GA 

is used in the biohydrogen yield optimization (54 ml/g improvement with proposed approach) 

[380]; in another study [381] similar combination of methods is used to optimize the cell 
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parameters of SOFC (standard error of prediction 1.705%); a hybrid ABC algorithm is used in 

the parameter prediction of PEMFC and performance is compared with the PSO and GA, 

hybrid ABC performs better than the other methods with the minimum sum of squared error 

(SSE) [382]. 

 

4.8. AI in hybrid renewable energy 

Applications of AI approaches in the hybrid RE were briefly described in the reviews 

[383–385]. The development of approaches for the optimal sizing is briefly presented by Luna-

Rubio et al. [383]. Specifically, the design methodologies of solar-wind hybrid RE system are 

presented by Zhau et al. [384]; application of different EA approaches in optimization is 

summarized in [385]. 

 

 

 

Table 7 

Summary of reports for application of AI approaches in geothermal energy [357–382]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

Summary of reports for application of AI approaches in hybrid energy [386–397]. 

 

 

 

 

 

 

http://globalpublisher.org/journals-1006/


 
 

Energy Perspectives  

Volume 2, Issue 1, March 2021 

http://globalpublisher.org/journals-1006/  

  
 

 

www.globalpublisher.org   91 

Few single and hybrid AI approaches in hybrid RE applications [386–397] are 

summarized in Table 8. BPNN is used in the power use and generator status (on/off) prediction 

for a water power supply based hybrid RE system (prediction accuracy 97%) [386]. Chavez-

Ramirez et al. [387] implemented BPNN method for power prediction of hybrid RE systems 

and FLC for energy management. In another study, FLC and cuckoo search (CS) algorithm 

and PSO were used in energy management of hybrid RE system (levelized energy cost (LEC) 

2.01 $ with the CS) [388]. PSO is used in size optimization of hybrid RE system by Hakimi et 

al. [389] with the objective to make it more cost effective. An improved GA is used in operation 

optimization of hybrid RE system, which performs better than the traditional GA method [390]. 

Bee algorithm is used in performance parameters (net present cost (NPC), cost of energy (COE) 

and generation cost (GC)) optimization of hybrid RE system [391]. Khatib et al. [392] have 

implemented GA in the optimization of the hybrid PV/wind system for size of PV array and 

wind turbine and storage capacity. A multi-objective (MO)- ABC algorithm is used in hybrid 

(photo voltaic/wind turbine/fuel cell) energy system in size and distribution optimization [393], 

which results in a high voltage stability index (VSI). Markov based GA is used in size 

optimization of hybrid wind-PV-diesel system [394].  

The performance of four techniques (PSO, tabu search (TS), simulated annealing (SA), 

and harmony search (HS) for the size optimization of PV/wind/battery and PV/wind/FC 

systems is described in [395]. PSO results in better performance than rest three methods. In 

hybrid AI approaches, ANFIS is used for size optimization of the hybrid PV-wind-battery 

system with the objective to reduce the production cost; also, the performance is compared 

with the hybrid optimization model for electric renewables (HOMER) and hybrid optimization 

(HO)-GA (ANFIS achieve better performance) [396]. ANN and fuzzy logic based controller is 

developed as a hybrid AI approach to control the flow of power between the hybrid RE system 

and the energy storage unit, resulting, a high storage of charge (SOC) [397]. Some recent 

studies, [398–406] proposed the implementation of hybrid and improved AI methods for 

different RE systems, like ANFIS in wind power estimation [398,401], modeling of biodiesel 

[399], and solar radiation [400]; SVR+ARIMA for tidal current estimation [402]; empirical 

decomposition, wavelet decomposition, ANN and autoregressive methods in solar radiation 

estimation [403]; improved and hybrid ANN in load estimation of PV system [404], and in 

wind speed and power prediction [405]; and data mining method based efficient energy 

management system [406]. The detailed applications of AI methods have been also discussed 

in some latest review studies [407–415], specifically, for power tracking of PV system 

[407,412,413], solar energy and wind energy estimation [408,409,414], decision system in RE 

[410], controllers for PV systems [411], and energy management [415]. 

 

 

5. CONCLUSION 

The present review briefly presented the current status of research and development in 

single and hybrid RE systems. Moreover, the role of AI approaches in the control, decision, 

simulation, and optimization of RE systems is summarized. From the current state-of-art, it is 

obvious that in most of the research reports, the effective application of AI approaches in wind 

and solar energy based system is discussed. Though there are few research reports based on the 

http://globalpublisher.org/journals-1006/


 
 

Energy Perspectives  

Volume 2, Issue 1, March 2021 

http://globalpublisher.org/journals-1006/  

  
 

 

www.globalpublisher.org   92 

implementation of AI approaches in other and hybrid RE sources. AI approaches possess great 

potential. There is a need for their proper utilization in future research for the novel sources of 

RE and especially in the hybrid RE system. The implementation of novel and hybrid AI 

approaches will add additional performance improvement of RE sources for world prosperity. 
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